
The phylo4 S4 classes and methods

Ben Bolker, Peter Cowan & François Michonneau

February 2, 2019

Contents

1 Introduction 1

2 Package overview 2

3 Using the S4 help system 2

4 Trees without data 3

5 Trees with data 8

6 Subsetting 10

7 Tree-walking 11

8 multiPhylo4 classes 13

9 Examples 13
9.1 Constructing a Brownian motion trait simulator 13

A Definitions/slots 14
A.1 phylo4 . 14
A.2 phylo4d . 15

1 Introduction

This document describes the new phylo4 S4 classes and methods, which are intended to provide
a unifying standard for the representation of phylogenetic trees and comparative data in R. The
phylobase package was developed to help both end users and package developers by providing
a common suite of tools likely to be shared by all packages designed for phylogenetic analysis,
facilities for data and tree manipulation, and standardization of formats.

This standardization will benefit end-users by making it easier to move data and compare
analyses across packages, and to keep comparative data synchronized with phylogenetic trees.
Users will also benefit from a repository of functions for tree manipulation, for example tools
for including or excluding subtrees (and associated phenotypic data) or improved tree and data
plotting facilities. phylobase will benefit developers by freeing them to put their programming
effort into developing new methods rather than into re-coding base tools. We (the phylobase

1

developers) hope phylobase will also facilitate code validation by providing a repository for
benchmark tests, and more generally that it will help catalyze community development of
comparative methods in R.

A more abstract motivation for developing phylobase was to improve data checking and
abstraction of the tree data formats. phylobase can check that data and trees are associated
in the proper fashion, and protects users and developers from accidently reordering one, but
not the other. It also seeks to abstract the data format so that commonly used information
(for example, branch length information or the ancestor of a particular node) can be accessed
without knowledge of the underlying data structure (i.e., whether the tree is stored as a matrix,
or a list, or a parenthesis-based format). This is achieved through generic phylobase functions
which which retrieve the relevant information from the data structures. The benefits of such
abstraction are multiple: (1) easier access to the relevant information via a simple function
call (this frees both users and developers from learning details of complex data structures), (2)
freedom to optimize data structures in the future without breaking code. Having the generic
functions in place to “translate” between the data structures and the rest of the program
code allows program and data structure development to proceed somewhat independently. The
alternative is code written for specific data structures, in which modifications to the data
structure requires rewriting the entire package code (often exacting too high a price, which
results in the persistence of less-optimal data structures). (3) providing broader access to the
range of tools in phylobase. Developers of specific packages can use these new tools based on
S4 objects without knowing the details of S4 programming.

The base phylo4 class is modeled on the the phylo class in ape. phylo4d and multiphylo4

extend the phylo4 class to include data or multiple trees respectively. In addition to describing
the classes and methods, this vignette gives examples of how they might be used.

2 Package overview

The phylobase package currently implements the following functions and data structures:

• Data structures for storing a single tree and multiple trees: phylo4 and multiPhylo4?

• A data structure for storing a tree with associated tip and node data: phylo4d

• A data structure for storing multiple trees with one set of tip data: multiPhylo4d

• Functions for reading nexus files into the above data structures

• Functions for converting between the above data structures and ape phylo objects as
well as ade4 phylog objects (although the latter are now deprecated . . .)

• Functions for editing trees and data (i.e., subsetting and replacing)

• Functions for plotting trees and trees with data

3 Using the S4 help system

The S4 help system works similarly to the S3 help system with some small differences relating to
how S4 methods are written. The plot() function is a good example. When we type ?plot we
are provided the help for the default plotting function which expects x and y. R also provides a
way to smartly dispatch the right type of plotting function. In the case of an ape phylo object

2

(a S3 class object) R evaluates the class of the object and finds the correct functions, so the
following works correctly.

library(ape)

set.seed(1) ## set random-number seed

rand_tree <- rcoal(10) ## Make a random tree with 10 tips

plot(rand_tree)

However, typing ?plot still takes us to the default plot help. We have to type ?plot.phylo
to find what we are looking for. This is because S3 generics are simply functions with a dot
and the class name added.

The S4 generic system is too complicated to describe here, but doesn’t include the same dot
notation. As a result ?plot.phylo4 doesn’t work, R still finds the right plotting function.

library(phylobase)

##

Attaching package: ’phylobase’

The following object is masked from ’package:ape’:

##

edges

convert rand_tree to a phylo4 object

rand_p4_tree <- as(rand_tree, "phylo4")

plot(rand_p4_tree)

All fine and good, but how to we find out about all the great features of the phylobase

plotting function? R has two nifty ways to find it, the first is to simply put a question mark in
front of the whole call:

`?`(plot(rand_p4_tree))

R looks at the class of the rand p4 tree object and takes us to the correct help file (note:
this only works with S4 objects). The second ways is handy if you already know the class of
your object, or want to compare to generics for different classes:

`?`(method, plot("phylo4"))

More information about how S4 documentation works can be found in the methods package,
by running the following command.

help('Documentation', package="methods")

4 Trees without data

You can start with a tree — an object of class phylo from the ape package (e.g., read in using
the read.tree() or read.nexus() functions), and convert it to a phylo4 object.

For example, load the raw Geospiza data:

3

library(phylobase)

data(geospiza_raw)

what does it contain?

names(geospiza_raw)

[1] "tree" "data"

Convert the S3 tree to a S4 phylo4 object using the as() function:

(g1 <- as(geospiza_raw$tree, "phylo4"))

label node ancestor edge.length node.type

1 fuliginosa 1 24 0.05500 tip

2 fortis 2 24 0.05500 tip

3 magnirostris 3 23 0.11000 tip

4 conirostris 4 22 0.18333 tip

5 scandens 5 21 0.19250 tip

6 difficilis 6 20 0.22800 tip

7 pallida 7 25 0.08667 tip

8 parvulus 8 27 0.02000 tip

9 psittacula 9 27 0.02000 tip

10 pauper 10 26 0.03500 tip

11 Platyspiza 11 18 0.46550 tip

12 fusca 12 17 0.53409 tip

13 Pinaroloxias 13 16 0.58333 tip

14 olivacea 14 15 0.88077 tip

15 <NA> 15 0 NA root

16 <NA> 16 15 0.29744 internal

17 <NA> 17 16 0.04924 internal

18 <NA> 18 17 0.06859 internal

19 <NA> 19 18 0.13404 internal

20 <NA> 20 19 0.10346 internal

21 <NA> 21 20 0.03550 internal

22 <NA> 22 21 0.00917 internal

23 <NA> 23 22 0.07333 internal

24 <NA> 24 23 0.05500 internal

25 <NA> 25 19 0.24479 internal

26 <NA> 26 25 0.05167 internal

27 <NA> 27 26 0.01500 internal

The (internal) nodes appear with labels <NA> because they are not defined:

nodeLabels(g1)

15 16 17 18 19 20 21 22 23 24 25 26 27

NA NA NA NA NA NA NA NA NA NA NA NA NA

You can also retrieve the node labels with labels(g1,"internal")).
A simple way to assign the node numbers as labels (useful for various checks) is

4

nodeLabels(g1) <- paste("N", nodeId(g1, "internal"), sep="")

head(g1, 5)

label node ancestor edge.length node.type

1 fuliginosa 1 24 0.05500 tip

2 fortis 2 24 0.05500 tip

3 magnirostris 3 23 0.11000 tip

4 conirostris 4 22 0.18333 tip

5 scandens 5 21 0.19250 tip

The summary method gives a little extra information, including information on the distribu-
tion of branch lengths:

summary(g1)

##

Phylogenetic tree : g1

##

Number of tips : 14

Number of nodes : 13

Branch lengths:

mean : 0.1764008

variance : 0.04624379

distribution :

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00917 0.04985 0.08000 0.17640 0.21912 0.88077

Print tip labels:

tipLabels(g1)

1 2 3 4 5

"fuliginosa" "fortis" "magnirostris" "conirostris" "scandens"

6 7 8 9 10

"difficilis" "pallida" "parvulus" "psittacula" "pauper"

11 12 13 14

"Platyspiza" "fusca" "Pinaroloxias" "olivacea"

(labels(g1,"tip") would also work.)
You can modify labels and other aspects of the tree — for example, to convert all the labels

to lower case:

tipLabels(g1) <- tolower(tipLabels(g1))

You could also modify selected labels, e.g. to modify the labels in positions 11 and 13 (which
happen to be the only labels with uppercase letters):

5

tipLabels(g1)[c(11, 13)] <- c("platyspiza", "pinaroloxias")

Note that for a given tree, phylobase always return the tipLabels in the same order.
Print node numbers (in edge matrix order):

nodeId(g1, type='all')

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

[24] 24 25 26 27

Does it have information on branch lengths?

hasEdgeLength(g1)

[1] TRUE

It does! What do they look like?

edgeLength(g1)

15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23 23-24

0.29744 0.04924 0.06859 0.13404 0.10346 0.03550 0.00917 0.07333 0.05500

24-1 24-2 23-3 22-4 21-5 0-15 20-6 19-25 25-7

0.05500 0.05500 0.11000 0.18333 0.19250 NA 0.22800 0.24479 0.08667

25-26 26-27 27-8 27-9 26-10 18-11 17-12 16-13 15-14

0.05167 0.01500 0.02000 0.02000 0.03500 0.46550 0.53409 0.58333 0.88077

Note that the root has <NA> as its length.
Print edge labels (also empty in this case — therefore all NA):

edgeLabels(g1)

15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23 23-24 24-1 24-2 23-3

NA NA NA NA NA NA NA NA NA NA NA NA

22-4 21-5 0-15 20-6 19-25 25-7 25-26 26-27 27-8 27-9 26-10 18-11

NA NA NA NA NA NA NA NA NA NA NA NA

17-12 16-13 15-14

NA NA NA

You can also use this function to label specific edges:

edgeLabels(g1)["23-24"] <- "an edge"

edgeLabels(g1)

15-16 16-17 17-18 18-19 19-20 20-21 21-22

NA NA NA NA NA NA NA

22-23 23-24 24-1 24-2 23-3 22-4 21-5

NA "an edge" NA NA NA NA NA

0-15 20-6 19-25 25-7 25-26 26-27 27-8

NA NA NA NA NA NA NA

27-9 26-10 18-11 17-12 16-13 15-14

NA NA NA NA NA NA

6

The edge labels are named according to the nodes they connect (ancestor-descendant). You
can get the edge(s) associated with a particular node:

getEdge(g1, 24) # default uses descendant node

24

"23-24"

getEdge(g1, 24, type="ancestor") # edges using ancestor node

24 24

"24-1" "24-2"

These results can in turn be passed to the function edgeLength to retrieve the length of a
given set of edges:

edgeLength(g1)[getEdge(g1, 24)]

23-24

0.055

edgeLength(g1)[getEdge(g1, 24, "ancestor")]

24-1 24-2

0.055 0.055

Is it rooted?

isRooted(g1)

[1] TRUE

Which node is the root?

rootNode(g1)

N15

15

Does it contain any polytomies?

hasPoly(g1)

[1] FALSE

Is the tree ultrametric?

isUltrametric(g1)

[1] TRUE

7

You can also get the depth (distance from the root) of any given node or the tips:

nodeDepth(g1, 23)

Warning: ’nodeDepth’ is deprecated.

Use ’nodeHeight’ instead.

See help("Deprecated")

N23

0.77077

depthTips(g1)

Warning: ’depthTips’ is deprecated.

Use ’nodeHeight’ instead.

See help("Deprecated")

Warning: ’nodeDepth’ is deprecated.

Use ’nodeHeight’ instead.

See help("Deprecated")

fuliginosa fortis magnirostris conirostris scandens

0.88077 0.88077 0.88077 0.88077 0.88077

difficilis pallida parvulus psittacula pauper

0.88077 0.88077 0.88077 0.88077 0.88077

platyspiza fusca pinaroloxias olivacea

0.88077 0.88077 0.88077 0.88077

5 Trees with data

The phylo4d class matches trees with data, or combines them with a data frame to make a
phylo4d (tree-with-data) object.

Now we’ll take the Geospiza data from geospiza_raw$data and merge it with the tree.
First, let’s prepare the data:

g1 <- as(geospiza_raw$tree, "phylo4")

geodata <- geospiza_raw$data

However, since G. olivacea is included in the tree but not in the data set, we will initially
run into some trouble:

g2 <- phylo4d(g1, geodata)

Error in formatData(phy = x, dt = tip.data, type = "tip", ...): The following

nodes are not found in the dataset: olivacea

To deal with G. olivacea missing from the data, we have a few choices. The easiest is to use
missing.data="warn" to allow R to create the new object with a warning (you can also use
missing.data="OK" to proceed without warnings):

8

g2 <- phylo4d(g1, geodata, missing.data="warn")

Warning in formatData(phy = x, dt = tip.data, type = "tip", ...): The following

nodes are not found in the dataset: olivacea

Another way to deal with this would be to use prune() to drop the offending tip from the
tree first:

g1sub <- prune(g1, "olivacea")

g1B <- phylo4d(g1sub, geodata)

The difference between the two objects is that the species G. olivacea is still present in the
tree but has no data (i.e., NA) associated with it. In the other case, G. olivacea is not included
in the tree anymore. The approach you choose depends on the goal of your analysis.

You can summarize the new object with the function summary. It breaks down the statistics
about the traits based on whether it is associated with the tips for the internal nodes:

summary(g2)

##

Phylogenetic tree : as(x, "phylo4")

##

Number of tips : 14

Number of nodes : 13

Branch lengths:

mean : 0.1764008

variance : 0.04624379

distribution :

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00917 0.04985 0.08000 0.17640 0.21912 0.88077

##

Comparative data:

##

Tips: data.frame with 14 taxa and 5 variable(s)

##

wingL tarsusL culmenL beakD

Min. :3.975 Min. :2.807 Min. :1.974 Min. :1.191

1st Qu.:4.189 1st Qu.:2.929 1st Qu.:2.187 1st Qu.:1.941

Median :4.235 Median :2.980 Median :2.311 Median :2.073

Mean :4.236 Mean :2.991 Mean :2.333 Mean :2.083

3rd Qu.:4.265 3rd Qu.:3.039 3rd Qu.:2.430 3rd Qu.:2.347

Max. :4.420 Max. :3.271 Max. :2.725 Max. :2.824

NA's :1 NA's :1 NA's :1 NA's :1

gonysW

Min. :1.401

1st Qu.:1.845

Median :1.962

Mean :2.014

3rd Qu.:2.222

9

Max. :2.676

NA's :1

##

Nodes: data.frame with 13 internal nodes and 5 variables

##

wingL tarsusL culmenL beakD gonysW

Min. : NA Min. : NA Min. : NA Min. : NA Min. : NA

1st Qu.: NA 1st Qu.: NA 1st Qu.: NA 1st Qu.: NA 1st Qu.: NA

Median : NA Median : NA Median : NA Median : NA Median : NA

Mean :NaN Mean :NaN Mean :NaN Mean :NaN Mean :NaN

3rd Qu.: NA 3rd Qu.: NA 3rd Qu.: NA 3rd Qu.: NA 3rd Qu.: NA

Max. : NA Max. : NA Max. : NA Max. : NA Max. : NA

NA's :13 NA's :13 NA's :13 NA's :13 NA's :13

Or use tdata() to extract the data (i.e., tdata(g2)). By default, tdata() will retrieve tip
data, but you can also get internal node data only (tdata(tree, "internal")) or — if the tip
and node data have the same format — all the data combined (tdata(tree, "allnode")).

If you want to plot the data (e.g. for checking the input), plot(tdata(g2)) will create the
default plot for the data — in this case, since it is a data frame [this may change in future
versions but should remain transparent] this will be a pairs plot of the data.

6 Subsetting

The subset command offers a variety of ways of extracting portions of a phylo4 or phylo4d

tree, keeping any tip/node data consistent.

tips.include give a vector of tips (names or numbers) to retain

tips.exclude give a vector of tips (names or numbers) to drop

mrca give a vector of node or tip names or numbers; extract the clade containing these taxa

node.subtree give a node (name or number); extract the subtree starting from this node

Different ways to extract the fuliginosa-scandens clade:

subset(g2, tips.include=c("fuliginosa", "fortis", "magnirostris",

"conirostris", "scandens"))

subset(g2, node.subtree=21)

subset(g2, mrca=c("scandens", "fortis"))

One could drop the clade by doing

subset(g2, tips.exclude=c("fuliginosa", "fortis", "magnirostris",

"conirostris", "scandens"))

subset(g2, tips.exclude=names(descendants(g2, MRCA(g2, c("difficilis",

"fortis")))))

10

7 Tree-walking

phylobase provides many functions that allows users to explore relationships between nodes
on a tree (tree-walking and tree traversal). Most functions work by specifying the phylo4

(or phylo4d) object as the first argument, the node numbers/labels as the second argument
(followed by some additional arguments).

getNode allows you to find a node based on its node number or its label. It returns a vector
with node numbers as values and labels as names:

data(geospiza)

getNode(geospiza, 10)

pauper

10

getNode(geospiza, "pauper")

pauper

10

If no node is specified, they are all returned, and if a node can’t be found it’s returned as a
NA. It is possible to control what happens when a node can’t be found:

getNode(geospiza)

fuliginosa fortis magnirostris conirostris scandens

1 2 3 4 5

difficilis pallida parvulus psittacula pauper

6 7 8 9 10

Platyspiza fusca Pinaroloxias olivacea N15

11 12 13 14 15

N16 N17 N18 N19 N20

16 17 18 19 20

N21 N22 N23 N24 N25

21 22 23 24 25

N26 N27

26 27

getNode(geospiza, 10:14)

pauper Platyspiza fusca Pinaroloxias olivacea

10 11 12 13 14

getNode(geospiza, "melanogaster", missing="OK") # no warning

<NA>

NA

getNode(geospiza, "melanogaster", missing="warn") # warning!

Warning in getNode(geospiza, "melanogaster", missing = "warn"): Some nodes not

found among all nodes in tree: melanogaster

11

<NA>

NA

children and ancestor give the immediate neighboring nodes:

children(geospiza, 16)

N17 Pinaroloxias

17 13

ancestor(geospiza, 16)

N15

15

while descendants and ancestors can traverse the tree up to the tips or root respectively:

descendants(geospiza, 16) # by default returns only the tips

Pinaroloxias fusca Platyspiza difficilis scandens

13 12 11 6 5

conirostris magnirostris fuliginosa fortis pallida

4 3 1 2 7

pauper parvulus psittacula

10 8 9

descendants(geospiza, "all") # also include the internal nodes

Warning in getNode(phy, node, missing = "warn"): Some nodes not found among

all nodes in tree: all

named list()

ancestors(geospiza, 20)

N19 N18 N17 N16 N15

19 18 17 16 15

ancestors(geospiza, 20, "ALL") # uppercase ALL includes self

N20 N19 N18 N17 N16 N15

20 19 18 17 16 15

siblings returns the other node(s) associated with the same ancestor:

siblings(geospiza, 20)

N25

25

siblings(geospiza, 20, include.self=TRUE)

12

N20 N25

20 25

MRCA returns the most common recent ancestor for a set of tips, and shortest path returns
the nodes connecting 2 nodes:

MRCA(geospiza, 1:6)

N20

20

shortestPath(geospiza, 4, "pauper")

N19 N20 N21 N22 N25 N26

19 20 21 22 25 26

8 multiPhylo4 classes

multiPhylo4 classes are not yet implemented but will be coming soon.

9 Examples

9.1 Constructing a Brownian motion trait simulator

This section will describe a way of constructing a simulator that generates trait values for extant
species (tips) given a tree with branch lengths, assuming a model of Brownian motion.

We can use as(tree,"phylo4vcov") to coerce the tree into a variance-covariance matrix
form, and then use mvrnorm from the MASS package to generate a set of multivariate normally
distributed values for the tips. (A benefit of this approach is that we can very quickly generate
a very large number of replicates.) This example illustrates a common feature of working with
phylobase — combining tools from several different packages to operate on phylogenetic trees
with data.

We start with a randomly generated tree using rcoal() from ape to generate the tree
topology and branch lengths:

set.seed(1001)

tree <- as(rcoal(12), "phylo4")

Next we generate the phylogenetic variance-covariance matrix (by coercing the tree to a
phylo4vcov object) and pick a single set of normally distributed traits (using MASS:mvrnorm to
pick a multivariate normal deviate with a variance-covariance matrix that matches the structure
of the tree).

vmat <- as(tree, "phylo4vcov")

vmat <- cov2cor(vmat)

library(MASS)

trvec <- mvrnorm(1, mu=rep(0, 12), Sigma=vmat)

13

The last step (easy) is to convert the phylo4vcov object back to a phylo4d object:

treed <- phylo4d(tree, tip.data=as.data.frame(trvec))

plot(treed)

A Definitions/slots

This section details the internal structure of the phylo4, multiphylo4 (coming soon!), phylo4d,
and multiphylo4d (coming soon!) classes. The basic building blocks of these classes are the
phylo4 object and a dataframe. The phylo4 tree format is largely similar to the one used by
phylo class in the package ape1.

We use “edge” for ancestor-descendant relationships in the phylogeny (sometimes called
“branches”) and “edge lengths” for their lengths (“branch lengths”). Most generally, “nodes”
are all species in the tree; species with descendants are “internal nodes” (we often refer to these
just as “nodes”, meaning clear from context); “tips” are species with no descendants. The “root
node” is the node with no ancestor (if one exists).

A.1 phylo4

Like phylo, the main components of the phylo4 class are:

edge a 2-column matrix of integers, with N rows for a rooted tree or N−1 rows for an unrooted
tree and column names ancestor and descendant. Each row contains information on
one edge in the tree. See below for further constraints on the edge matrix.

edge.length numeric list of edge lengths (length N (rooted) or N − 1 (unrooted) or empty
(length 0))

tip.label character vector of tip labels (required), with length=# of tips. Tip labels need not
be unique, but data-tree matching with non-unique labels will cause an error

node.label character vector of node labels, length=# of internal nodes or 0 (if empty). Node
labels need not be unique, but data-tree matching with non-unique labels will cause an
error

order character: “preorder”, “postorder”, or “unknown” (default), describing the order of rows
in the edge matrix. , “pruningwise” and “cladewise” are accepted for compatibility with
ape

The edge matrix must not contain NAs, with the exception of the root node, which has an
NA for ancestor. phylobase does not enforce an order on the rows of the edge matrix, but it
stores information on the current ordering in the @order slot — current allowable values are
“unknown” (the default), “preorder” (equivalent to “cladewise” in ape) or “postorder” 2.

The basic criteria for the edge matrix are similar to those of ape, as documented it’s tree
specification3. This is a modified version of those rules, for a tree with n tips and m internal
nodes:

1http://ape.mpl.ird.fr/
2see http://en.wikipedia.org/wiki/Tree_traversal for more information on orderings. (ape’s “pruning-

wise” is “bottom-up” ordering).
3ape.mpl.ird.fr/misc/FormatTreeR_28July2008.pdf

14

• Tips (no descendants) are coded 1, . . . , n, and internal nodes (≥ 1 descendant) are coded
n + 1, . . . , n + m (n + 1 is the root). Both series are numbered with no gaps.

• The first (ancestor) column has only values > n (internal nodes): thus, values ≤ n (tips)
appear only in the second (descendant) column)

• all internal nodes [not including the root] must appear in the first (ancestor) column at
least once [unlike ape, which nominally requires each internal node to have at least two
descendants (although it doesn’t absolutely prohibit them and has a collapse.singles

function to get rid of them), phylobase does allow these “singleton nodes” and has
a method hasSingle for detecting them]. Singleton nodes can be useful as a way of
representing changes along a lineage; they are used this way in the ouch package.

• the number of occurrences of a node in the first column is related to the nature of the
node: once if it is a singleton, twice if it is dichotomous (i.e., of degree 3 [counting ancestor
as well as descendants]), three times if it is trichotomous (degree 4), and so on.

phylobase does not technically prohibit reticulations (nodes or tips that appear more than
once in the descendant column), but they will probably break most of the methods. Discon-
nected trees, cycles, and other exotica are not tested for, but will certainly break the methods.

We have defined basic methods for phylo4:show, print, and a variety of accessor functions
(see help files). summary does not seem to be terribly useful in the context of a “raw” tree,
because there is not much to compute.

A.2 phylo4d

The phylo4d class extends phylo4 with data. Tip data, and (internal) node data are stored sep-
arately, but can be retrieved together or separately with tdata(x,"tip"), tdata(x,"internal")
or tdata(x,"all"). There is no separate slot for edge data, but these can be stored as node
data associated with the descendant node.

15

