
Alakazam: Reconstruction of Ig lineage trees
Jason Anthony Vander Heiden

2018-09-13

Contents
Example data . 1
Preprocess a clone . 1
Run PHYLIP . 2
Plotting of the lineage tree . 3
Batch processing lineage trees . 4

Reconstruction of an Ig lineage requires the following steps:

1. Load a Change-O tab-delimited database file and select a clone
2. Preprocess the clone to remove gap characters and duplicate sequences
3. Run PHYLIP, parse the output, and modify the tree topology

Example data

A small example Change-O database, ExampleDb, is included in the alakazam package. Lineage
reconstruction requires the following fields (columns) to be present in the Change-O file:

• SEQUENCE_ID
• SEQUENCE_IMGT
• CLONE
• GERMLINE_IMGT_D_MASK
• V_CALL
• J_CALL
• JUNCTION_LENGTH

Load required packages
library(alakazam)
library(igraph)
library(dplyr)

Select clone from example database
data(ExampleDb)
sub_db <- subset(ExampleDb, CLONE == 3138)

Preprocess a clone

Before a lineage can be constructed the sequences must first be cleaned of gap (-, .) characters
added by IMGT, duplicate sequences must be removed, and annotations must be combined for each
cluster of duplicate sequences. Optionally, “ragged” ends of sequences, such as may occur from
primer template switching, may also be cleaned by masking mismatched positions and the leading

1

and trailing ends of each sequence. The function makeChangeoClone is a wrapper function which
combines these steps and returns a ChangeoClone object which may then be passed into the lineage
reconstruction function.

Two arguments to makeChangeoClone control which annotations are retained following duplicate
removal. Unique values appearing within columns given by the text_fields arguments will be
concatenated into a single string delimited by a “,” character. Values appearing within columns
given by the num_fields arguments will be summed.

This example data set does not have ragged ends
Preprocess clone without ragged end masking (default)
clone <- makeChangeoClone(sub_db, text_fields=c("SAMPLE", "ISOTYPE"),

num_fields="DUPCOUNT")

Show combined annotations
clone@data[, c("SAMPLE", "ISOTYPE", "DUPCOUNT")]

SAMPLE ISOTYPE DUPCOUNT
1 +7d IgA 1
2 +7d IgG 1
3 +7d IgA,IgG 10
4 +7d IgG 36
5 +7d IgA 10
6 +7d IgG 13

Run PHYLIP

Lineage construction uses the dnapars (maximum parsimony) application of the PHYLIP package.
The function buildPhylipLineage performs a number of steps to execute dnapars, parse its output,
and modify the tree topology to meet the criteria of an Ig lineage. This function takes as input
a ChangeoClone object output by makeChangeoClone and returns an igraph graph object. The
igraph graph object will contain clone annotations as graph attributes, sequence annotations as
vertex attributes, and mutations along edges as edge attributes.

The system call to dnapars requires a temporary folder to store input and output. This is created
in the system temporary location (according to base::tempfile), and is not deleted by default
(only because automatically deleting files is somewhat rude). In most cases, you will want to set
rm_temp=TRUE to delete this folder.

Run PHYLIP and parse output
dnapars_exec <- "~/apps/phylip-3.69/dnapars"
graph <- buildPhylipLineage(clone, dnapars_exec, rm_temp=TRUE)

The graph has shared annotations for the clone
data.frame(CLONE=graph$clone,

JUNCTION_LENGTH=graph$junc_len,
V_GENE=graph$v_gene,
J_GENE=graph$j_gene)

CLONE JUNCTION_LENGTH V_GENE J_GENE

2

1 3138 60 IGHV3-49 IGHJ5

The vertices have sequence specific annotations
data.frame(SEQUENCE_ID=V(graph)$name,

ISOTYPE=V(graph)$ISOTYPE,
DUPCOUNT=V(graph)$DUPCOUNT)

SEQUENCE_ID ISOTYPE DUPCOUNT
1 GN5SHBT06HH3QD IgA 10
2 GN5SHBT08F45HV IgA,IgG 10
3 Germline <NA> NA
4 GN5SHBT06IFV0R IgG 13
5 GN5SHBT08I3P11 IgG 36
6 GN5SHBT01BXJY7 IgG 1
7 GN5SHBT01EGEU6 IgA 1

Plotting of the lineage tree

Plotting of a lineage tree may be done using the built-in functions of the igraph package. The
default edge and vertex labels are edge weights and sequence identifiers, respectively.

Plot graph with defaults
plot(graph)

3

2
7

1

1

20
GN5SHBT06HH3QD

GN5SHBT08F45HV

Germline

GN5SHBT06IFV0R

GN5SHBT08I3P11

GN5SHBT01BXJY7

GN5SHBT01EGEU6

The default layout and attributes are not very pretty. We can modify the graphical parameter in the
usual igraph ways. A tree layout can be built using the layout_as_tree layout with assignment of
the root position to the germline sequence, which is named “Germline” in the object returned by
buildPhylipLineage.

Modify graph and plot attributes

3

V(graph)$color <- "steelblue"
V(graph)$color[V(graph)$name == "Germline"] <- "black"
V(graph)$color[grepl("Inferred", V(graph)$name)] <- "white"
V(graph)$label <- V(graph)$ISOTYPE
E(graph)$label <- ""

Remove large default margins
par(mar=c(0, 0, 0, 0) + 0.1)
Plot graph
plot(graph, layout=layout_as_tree, edge.arrow.mode=0, vertex.frame.color="black",

vertex.label.color="black", vertex.size=40)
Add legend
legend("topleft", c("Germline", "Inferred", "Sample"),

fill=c("black", "white", "steelblue"), cex=0.75)

IgA

IgA,IgG

IgG IgG IgG IgA

Germline
Inferred
Sample

Which is much better.

Batch processing lineage trees

Multiple lineage trees may be generated at once, by splitting the Change-O data.frame on the clone
column.

Preprocess clones
clones <- ExampleDb %>%

group_by(CLONE) %>%
do(CHANGEO=makeChangeoClone(., text_fields=c("SAMPLE", "ISOTYPE"),

num_fields="DUPCOUNT"))

Build lineages

4

dnapars_exec <- "~/apps/phylip-3.69/dnapars"
graphs <- lapply(clones$CHANGEO, buildPhylipLineage,

dnapars_exec=dnapars_exec, rm_temp=TRUE)

Note, clones with only a single sequence will not be processed.
A warning will be generated and NULL will be returned by buildPhylipLineage
These entries may be removed for clarity
graphs[sapply(graphs, is.null)] <- NULL

The set of tree may then be subset by node count for further
analysis, if desired.
graphs <- graphs[sapply(graphs, vcount) >= 5]

5

	Example data
	Preprocess a clone
	Run PHYLIP
	Plotting of the lineage tree
	Batch processing lineage trees

