
Handling shapefiles in the spatstat package

Adrian Baddeley, Rolf Turner and Ege Rubak

2020-05-10
spatstat version 1.64-1

This vignette explains how to read data into the spatstat package from files in the popular
‘shapefile’ format.

This vignette is part of the documentation included in spatstat version 1.64-1. The information
applies to spatstat versions 1.36-0 and above.

1 Shapefiles

A shapefile represents a list of spatial objects — a list of points, a list of lines, or a list of polygonal
regions — and each object in the list may have additional variables attached to it.

A dataset stored in shapefile format is actually stored in a collection of text files, for example

mydata.shp

mydata.prj

mydata.sbn

mydata.dbf

which all have the same base name mydata but different file extensions. To refer to this collection you
will always use the filename with the extension shp, for example mydata.shp.

2 Helper packages

We’ll use two other packages to handle shapefile data.

The maptools package is designed specifically for handling file formats for spatial data. It contains
facilities for reading and writing files in shapefile format.1

The sp package supports a standard set of spatial data types in R. These standard data types can
be handled by many other packages, so it is useful to convert your spatial data into one of the data
types supported by sp.

3 Caveat about longitude-latitude coordinates

The shapefile format supports geographical coordinates, usually longitude-latitude coordinates, which
specify locations on the curved surface of the Earth. However, spatstat deals only with spatial data
on a flat two-dimensional plane.

1 Some code in maptools is no longer maintained, and may give you a message recommending that you use the

packages rgdal and sf. However these packages are more difficult to install than maptools because of their software

requirements. So we recommend that you try maptools first.

1



When shapefile data are converted into spatstat objects, longitude and latitude coordinates are
(currently) treated as x and y coordinates, so that the Earth’s surface is effectively mapped to a
rectangle. This mapping distorts distances and areas.

If your study region is a small region of the Earth’s surface (about 3 degrees, 180 nautical miles,
200 statute miles, 320 km across) then a reasonable approach is to use the latitude and longitude as
x and y coordinates, after multiplying the longitude coordinates by the cosine of the latitude of the
centre of the region. This will approximately preserve areas and distances. This calculation is a simple
example of a geographical projection and there are some much better projections available. It may be
wise to use another package to perform the appropriate projection for you, and then to convert the
projected data into spatstat objects.

If your study region is a large part of the sphere, then your data may not be amenable to the
techniques provided by spatstat because the geometry is fundamentally different. Please consider
the extension package spatstat.sphere.

4 How to read shapefiles into spatstat

To read shapefile data into spatstat, you follow two steps:

1. using the facilities of maptools, read the shapefiles and store the data in one of the standard
formats supported by sp.

2. convert the sp data type into one of the data types supported by spatstat.

4.1 Read shapefiles using maptools

Here’s how to read shapefile data.

1. ensure that the package maptools is installed. You will need version 0.7-16 or later.

2. start R and load the package:

> library(maptools)

3. read the shapefile into an object in the sp package using readShapeSpatial, for example

> x <- readShapeSpatial("mydata.shp")

In recent versions of maptools you may get a warning, saying that this code is no longer sup-
ported, and recommending the packages rgdal and sf. As far as we know, this warning is
premature, as the code still works fine!

4. To find out what kind of spatial objects are represented by the dataset, inspect its class:

> class(x)

The class may be either SpatialPoints indicating a point pattern, SpatialLines indicating
a list of polygonal lines, or SpatialPolygons indicating a list of polygons. It may also be
SpatialPointsDataFrame, SpatialLinesDataFrame or SpatialPolygonsDataFrame indicating
that, in addition to the spatial objects, there is a data frame of additional variables. The classes
SpatialPixelsDataFrame and SpatialGridDataFrame represent pixel image data.

Here are some examples, using the example shapefiles supplied in the maptools package itself.

2



> setwd(system.file("shapes", package="maptools"))

> baltim <- readShapeSpatial("baltim.shp")

> columbus <- readShapeSpatial("columbus.shp")

> fylk <- readShapeSpatial("fylk-val.shp")

> class(baltim)

[1] "SpatialPointsDataFrame"

> class(columbus)

[1] "SpatialPolygonsDataFrame"

> class(fylk)

[1] "SpatialLinesDataFrame"

4.2 Convert data to spatstat format

To convert the dataset to an object in the spatstat package, the procedure depends on the type of
data, as explained below.

Both packages maptools and spatstat must be loaded in order to convert the data.

4.2.1 Objects of class SpatialPoints

An object x of class SpatialPoints represents a spatial point pattern. Use as(x, "ppp") or as.ppp(x)
to convert it to a spatial point pattern in spatstat.

(The conversion is performed by as.ppp.SpatialPoints, a function in maptools.)
The window for the point pattern will be taken from the bounding box of the points. You will

probably wish to change this window, usually by taking another dataset to provide the window in-
formation. Use [.ppp to change the window: if X is a point pattern object of class "ppp" and W is a
window object of class "owin", type

> X <- X[W]

4.2.2 Objects of class SpatialPointsDataFrame

An object x of class SpatialPointsDataFrame represents a pattern of points with additional variables
(‘marks’) attached to each point. It includes an object of class SpatialPoints giving the point
locations, and a data frame containing the additional variables attached to the points.

Use as(x, "ppp") or as.ppp(x) to convert an object x of class SpatialPointsDataFrame to a
spatial point pattern in spatstat. In this conversion, the data frame of additional variables in x will
become the marks of the point pattern z.

> y <- as(x, "ppp")

(The conversion is performed by as.ppp.SpatialPointsDataFrame, a function in maptools. So
the maptools and spatstat packages must be loaded in order for this to work.)

Before the conversion you can extract the data frame of auxiliary data by df <- x@data or df <-

slot(x, "data"). After the conversion you can extract these data by df <- marks(y).
For example:

> balt <- as(baltim, "ppp")

> bdata <- slot(baltim, "data")

3



4.2.3 Objects of class SpatialLines

A “line segment” is the straight line between two points in the plane.

In the spatstat package, an object of class psp (“planar segment pattern”) represents a pattern
of line segments, which may or may not be connected to each other (like matches which have fallen at
random on the ground).

In the sp package, an object of class SpatialLines represents a list of lists of connected curves,
each curve consisting of a sequence of straight line segments that are joined together (like several pieces
of a broken bicycle chain.)

So these two data types do not correspond exactly.

The list-of-lists hierarchy in a SpatialLines object is useful when representing internal divisions
in a country. For example, if USA is an object of class SpatialLines representing the borders of
the United States of America, then USA@lines might be a list of length 52, with USA@lines[[i]]

representing the borders of the i-th State. The borders of each State consist of several different
curved lines. Thus USA@lines[[i]]@Lines[[j]] would represent the jth piece of the boundary of
the i-th State.

If x is an object of class SpatialLines, there are several things that you might want to do:

1. collect together all the line segments (all the segments that make up all the connected curves)
and store them as a single object of class psp.

To do this, use as(x, "psp") or as.psp(x) to convert it to a spatial line segment
pattern.

2. convert each connected curve to an object of class psp, keeping different connected curves sepa-
rate.

To do this, type something like the following:

> out <- lapply(x@lines, function(z) { lapply(z@Lines, as.psp) })

(The conversion is performed by as.psp.SpatialLines, a function in maptools. So the map-

tools and spatstat packages must be loaded in order for this to work.)

The result will be a list of lists of objects of class psp. Each one of these objects represents
a connected curve, although the spatstat package does not know that. The list structure will
reflect the list structure of the original SpatialLines object x. If that’s not what you want,
then use curvelist <- do.call("c", out) or

> curvegroup <- lapply(out, function(z) { do.call("superimpose", z)})

to collapse the list-of-lists-of-psp’s into a list-of-psp’s. In the first case, curvelist[[i]] is a
psp object representing the i-th connected curve. In the second case, curvegroup[[i]] is a psp

object containing all the line segments in the i-th group of connected curves (for example the
i-th State in the USA example).

The window for the spatial line segment pattern can be specified as an argument window to the
function as.psp.

(The conversion is performed by as.psp.SpatialLines or as.psp.Lines, which are functions in
maptools.)

4



4.2.4 Objects of class SpatialLinesDataFrame

An object x of class SpatialLinesDataFrame is a SpatialLines object with additional data. The
additional data is stored as a data frame x@data with one row for each entry in x@lines, that is, one
row for each group of connected curves.

In the spatstat package, an object of class psp (representing a collection of line segments) may
have a data frame of marks. Note that each line segment in a psp object may have different mark
values.

If x is an object of class SpatialLinesDataFrame, there are two things that you might want to
do:

1. collect together all the line segments that make up all the connected lines, and store them as a
single object of class psp.

To do this, use as(x, "psp") or as.psp(x) to convert it to a marked spatial line
segment pattern.

2. keep each connected curve separate, and convert each connected curve to an object of class psp.
To do this, type something like the following:

> out <- lapply(x@lines, function(z) { lapply(z@Lines, as.psp) })

> dat <- x@data

> for(i in seq(nrow(dat)))

+ out[[i]] <- lapply(out[[i]], "marks<-", value=dat[i, , drop=FALSE])

The result is a list-of-lists-of-psp’s. See the previous subsection for explanation on how to change
this using c() or superimposePSP.

(The conversion is performed by as.psp.SpatialLines, a function in maptools. So the maptools
and spatstat packages must be loaded in order for this to work.)

In either case, the mark variables attached to a particular group of connected lines in the Spa-

tialLinesDataFrame object, will be duplicated and attached to each line segment in the resulting
psp object.

4.2.5 Objects of class SpatialPolygons

First, so that we don’t go completely crazy, let’s introduce some terminology. A polygon is a closed
curve that is composed of straight line segments. You can draw a polygon without lifting your pen
from the paper.

5



polygon

A polygonal region is a region in space whose boundary is composed of straight line segments.
A polygonal region may consist of several unconnected pieces, and each piece may have holes. The
boundary of a polygonal region consists of one or more polygons. To draw the boundary of a polygonal
region, you may need to lift and drop the pen several times.

polygonal region

An object of class owin in spatstat represents a polygonal region. It is a region of space that is
delimited by boundaries made of lines.

An object x of class SpatialPolygons represents a list of polygonal regions. For example, a
single object of class SpatialPolygons could store information about every State in the United States
of America (or the United States of Malaysia). Each State would be a separate polygonal region (and
it might contain holes such as lakes).

There are two things that you might want to do with an object of class SpatialPolygons:

1. combine all the polygonal regions together into a single polygonal region, and convert this to a
single object of class owin.

For example, you could combine all the States of the USA together and obtain a single
object that represents the territory of the USA.

To do this, use as(x, "owin") or as.owin(x). The result is a single window (object
of class "owin") in the spatstat package.

6



2. keep the different polygonal regions separate; convert each one of the polygonal regions to an
object of class owin.

For example, you could keep the States of the USA separate, and convert each State
to an object of class owin.

To do this, type the following:

> regions <- slot(x, "polygons")

> regions <- lapply(regions, function(x) { SpatialPolygons(list(x)) })

> windows <- lapply(regions, as.owin)

The result is a list of objects of class owin. Often it would make sense to convert this to a
tessellation object, by typing

> te <- tess(tiles=windows)

(The conversion is performed by as.owin.SpatialPolygons, a function in maptools. So the
maptools and spatstat packages must be loaded in order for this to work.)

The following is different from what happened in previous versions of spatstat (prior
to version 1.36-0.)

During the conversion process, the geometry of the polygons will be automatically “repaired” if
needed. Polygon data from shapefiles often contain geometrical inconsistencies such as self-intersecting
boundaries and overlapping pieces. For example, these can arise from small errors in curve-tracing.
Geometrical inconsistencies are tolerated in an object of class SpatialPolygons which is a list of
lists of polygonal curves. However, they are not tolerated in an object of class owin, because an
owin must specify a well-defined region of space. These data inconsistencies must be repaired to
prevent technical problems. Spatstat uses polygon-clipping code to automatically convert polygo-
nal lines into valid polygon boundaries. The repair process changes the number of vertices in each
polygon, and the number of polygons (if you chose option 1). To disable the repair process, set
spatstat.options(fixpolygons=FALSE).

4.2.6 Objects of class SpatialPolygonsDataFrame

What a mouthful!

An object x of class SpatialPolygonsDataFrame represents a list of polygonal regions, with ad-
ditional variables attached to each region. It includes an object of class SpatialPolygons giving the
spatial regions, and a data frame containing the additional variables attached to the regions. The
regions are extracted by

> y <- as(x, "SpatialPolygons")

and you then proceed as above to convert the curves to spatstat format.

The data frame of auxiliary data is extracted by df <- x@data or df <- slot(x, "data").

For example:

> cp <- as(columbus, "SpatialPolygons")

> cregions <- slot(cp, "polygons")

> cregions <- lapply(cregions, function(x) { SpatialPolygons(list(x)) })

> cwindows <- lapply(cregions, as.owin)

7



There is currently no facility in spatstat for attaching marks to an owin object directly.
However, spatstat supports objects called hyperframes, which are like data frames except that

the entries can be any type of object. Thus we can represent the columbus data in spatstat as
follows:

> ch <- hyperframe(window=cwindows)

> ch <- cbind.hyperframe(ch, columbus@data)

Then ch is a hyperframe containing a column of owin objects followed by the columns of auxiliary
data.

4.2.7 Objects of class SpatialGridDataFrame and SpatialPixelsDataFrame

An object x of class SpatialGridDataFrame represents a pixel image on a rectangular grid. It includes
a SpatialGrid object slot(x, "grid") defining the full rectangular grid of pixels, and a data frame
slot(x, "data") containing the pixel values (which may include NA values).

The command as(x, "im") converts x to a pixel image of class "im", taking the pixel values from
the first column of the data frame. If the data frame has multiple columns, these have to be converted
to separate pixel images in spatstat. For example

> y <- as(x, "im")

> ylist <- lapply(slot(x, "data"), function(z, y) { y[,] <- z; y }, y=y)

An object x of class SpatialPixelsDataFrame represents a subset of a pixel image. To convert
this to a spatstat object, it should first be converted to a SpatialGridDataFrame by as(x, "Spa-

tialGridDataFrame"), then handled as described above.

8


	Shapefiles
	Helper packages
	Caveat about longitude-latitude coordinates
	How to read shapefiles into spatstat
	Read shapefiles using maptools
	Convert data to spatstat format
	Objects of class SpatialPoints
	Objects of class SpatialPointsDataFrame 
	Objects of class SpatialLines
	Objects of class SpatialLinesDataFrame
	Objects of class SpatialPolygons
	Objects of class SpatialPolygonsDataFrame
	Objects of class SpatialGridDataFrame and SpatialPixelsDataFrame



