
 - 1 -

Mondrian 2.2.2
Technical Guide

Developing OLAP solutions with Mondrian

March 2007

 - 2 -

Table of Contents
License and Copyright ...4
Introduction..9
Mondrian and OLAP ..10

Online Analytical Processing ...10
Mondrian Architecture ...12

Layers of a Mondrian system..12
API ...15

How to Design a Mondrian Schema ..17
What is a schema?...17
Schema files..17
Logical model ..17
Cube...18
Measures ..19
Dimensions, Hierarchies, Levels ..20
An example ...20
Mapping dimensions and hierarchies onto tables ...21
The 'all' member..21
Time dimensions ...21
Order and display of levels ...22
Multiple hierarchies..23
Degenerate dimensions..23
Inline tables ..24
Member properties and formatters..25
Approximate level cardinality ..25
Star and snowflake schemas ..25
Shared dimensions ..26
Join optimization ...27
Advanced logical constructs..27
Member properties ..30
Calculated members ..31
Named sets ...32
Plug-ins...34
Member reader..37
Internationalization..39
Aggregate tables ...41
Access-control ...42
XML elements..44

MDX...47
What is the syntax of MDX?..47
Mondrian-specific MDX...47

Configuration Guide ..51
Properties that control execution ..51
Property list...51
Connect strings ...58

Optimizing Mondrian Performance..60
Introduction ..60
A generalized tuning process for Mondrian ..60
Recommendations for database tuning ...61
Aggregate Tables, Materialized Views and Mondrian ..61
AggGen...62

Aggregate Tables..63
Introduction ..63

 - 3 -

What are aggregate tables? ...64
A simple aggregate table..65
Another aggregate table ..66
Defining aggregate tables ..67
Building aggregate tables ...68
How Mondrian recognizes Aggregate Tables..74
Aggregate tables and parent-child hierarchies ...79
How Mondrian uses aggregate tables..82
Tools for designing and maintaining aggregate tables ..85
Properties which affect aggregates ...86
Aggregate Table References...88

Mondrian CmdRunner..89
What is CmdRunner? ...89
Building...89
Usage ...89
Properties File ...90
Command line arguments ..91
CmdRunner Commands..91
AggGen: Aggregate SQL Generator...95

Mondrian FAQs ...99
Why doesn't Mondrian use a standard API?...99
How does Mondrian's dialect of MDX differ from Microsoft Analysis Services?99
How can Mondrian be extended? ..99
Can Mondrian handle large datasets?..99
How do I enable tracing? ...99
How do I enable logging?... 100
Where can I find out more?.. 100
OLAP Modeling .. 101
Performance.. 102

Results Caching – The key to performance ... 104
Segment ... 105
Member set ... 105
Schema... 105
Star schemas... 105

Learning more about Mondrian .. 106
How Mondrian generates SQL... 106
Logging Levels and Information.. 107
Default aggregate table recognition rules .. 108
Snowflakes and the DimensionUsage level attribute... 113

Appendix A – MDX Function List... 117

 - 4 -

License and Copyright

This manual is derived from content published as part of the Mondrian open source project at
http://mondrian.pentaho.org, https://sourceforge.net/projects/mondrian and
https://sourceforge.net/project/showfiles.php?group_id=35302.

This content is published under the Common Public License Agreement version 1.0 (the “CPL”,
available at the following URL: http://www.opensource.org/licenses/cpl.html) - the same license
as the the original content.

Copyright is retained by the individual contributors note on the various sections of this document.

 - 5 -

Common Public License - v 1.0

THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS COMMON
PUBLIC LICENSE ("AGREEMENT"). ANY USE, REPRODUCTION OR DISTRIBUTION OF THE
PROGRAM CONSTITUTES RECIPIENT'S ACCEPTANCE OF THIS AGREEMENT.

1. DEFINITIONS

"Contribution" means:

a) in the case of the initial Contributor, the initial code and documentation distributed under this
Agreement, and
b) in the case of each subsequent Contributor:
i) changes to the Program, and
ii) additions to the Program;
where such changes and/or additions to the Program originate from and are distributed by that
particular Contributor. A Contribution 'originates' from a Contributor if it was added to the
Program by such Contributor itself or anyone acting on such Contributor's behalf. Contributions
do not include additions to the Program which: (i) are separate modules of software distributed in
conjunction with the Program under their own license agreement, and (ii) are not derivative works
of the Program.

"Contributor" means any person or entity that distributes the Program.

"Licensed Patents " mean patent claims licensable by a Contributor which are necessarily infringed by the
use or sale of its Contribution alone or when combined with the Program.

"Program" means the Contributions distributed in accordance with this Agreement.

"Recipient" means anyone who receives the Program under this Agreement, including all Contributors.

2. GRANT OF RIGHTS

a) Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-
exclusive, worldwide, royalty-free copyright license to reproduce, prepare derivative works of,
publicly display, publicly perform, distribute and sublicense the Contribution of such Contributor,
if any, and such derivative works, in source code and object code form.
b) Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-
exclusive, worldwide, royalty-free patent license under Licensed Patents to make, use, sell, offer
to sell, import and otherwise transfer the Contribution of such Contributor, if any, in source code
and object code form. This patent license shall apply to the combination of the Contribution and
the Program if, at the time the Contribution is added by the Contributor, such addition of the
Contribution causes such combination to be covered by the Licensed Patents. The patent license
shall not apply to any other combinations which include the Contribution. No hardware per se is
licensed hereunder.
c) Recipient understands that although each Contributor grants the licenses to its Contributions set
forth herein, no assurances are provided by any Contributor that the Program does not infringe the
patent or other intellectual property rights of any other entity. Each Contributor disclaims any
liability to Recipient for claims brought by any other entity based on infringement of intellectual
property rights or otherwise. As a condition to exercising the rights and licenses granted
hereunder, each Recipient hereby assumes sole responsibility to secure any other intellectual
property rights needed, if any. For example, if a third party patent license is required to allow

 - 6 -

Recipient to distribute the Program, it is Recipient's responsibility to acquire that license before
distributing the Program.
d) Each Contributor represents that to its knowledge it has sufficient copyright rights in its
Contribution, if any, to grant the copyright license set forth in this Agreement.

3. REQUIREMENTS

A Contributor may choose to distribute the Program in object code form under its own license agreement,
provided that:

a) it complies with the terms and conditions of this Agreement; and
b) its license agreement:
i) effectively disclaims on behalf of all Contributors all warranties and conditions, express and
implied, including warranties or conditions of title and non-infringement, and implied warranties
or conditions of merchantability and fitness for a particular purpose;
ii) effectively excludes on behalf of all Contributors all liability for damages, including direct,
indirect, special, incidental and consequential damages, such as lost profits;
iii) states that any provisions which differ from this Agreement are offered by that Contributor
alone and not by any other party; and
iv) states that source code for the Program is available from such Contributor, and informs
licensees how to obtain it in a reasonable manner on or through a medium customarily used for
software exchange.

When the Program is made available in source code form:

a) it must be made available under this Agreement; and
b) a copy of this Agreement must be included with each copy of the Program.

Contributors may not remove or alter any copyright notices contained within the Program.

Each Contributor must identify itself as the originator of its Contribution, if any, in a manner that
reasonably allows subsequent Recipients to identify the originator of the Contribution.

4. COMMERCIAL DISTRIBUTION

Commercial distributors of software may accept certain responsibilities with respect to end users, business
partners and the like. While this license is intended to facilitate the commercial use of the Program, the
Contributor who includes the Program in a commercial product offering should do so in a manner which
does not create potential liability for other Contributors. Therefore, if a Contributor includes the Program in
a commercial product offering, such Contributor ("Commercial Contributor") hereby agrees to defend and
indemnify every other Contributor ("Indemnified Contributor") against any losses, damages and costs
(collectively "Losses") arising from claims, lawsuits and other legal actions brought by a third party against
the Indemnified Contributor to the extent caused by the acts or omissions of such Commercial Contributor
in connection with its distribution of the Program in a commercial product offering. The obligations in this
section do not apply to any claims or Losses relating to any actual or alleged intellectual property
infringement. In order to qualify, an Indemnified Contributor must: a) promptly notify the Commercial
Contributor in writing of such claim, and b) allow the Commercial Contributor to control, and cooperate
with the Commercial Contributor in, the defense and any related settlement negotiations. The Indemnified
Contributor may participate in any such claim at its own expense.

For example, a Contributor might include the Program in a commercial product offering, Product X. That
Contributor is then a Commercial Contributor. If that Commercial Contributor then makes performance
claims, or offers warranties related to Product X, those performance claims and warranties are such
Commercial Contributor's responsibility alone. Under this section, the Commercial Contributor would have

 - 7 -

to defend claims against the other Contributors related to those performance claims and warranties, and if a
court requires any other Contributor to pay any damages as a result, the Commercial Contributor must pay
those damages.

5. NO WARRANTY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, THE PROGRAM IS PROVIDED ON
AN "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, EITHER
EXPRESS OR IMPLIED INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OR
CONDITIONS OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Each Recipient is solely responsible for determining the appropriateness of
using and distributing the Program and assumes all risks associated with its exercise of rights under this
Agreement, including but not limited to the risks and costs of program errors, compliance with applicable
laws, damage to or loss of data, programs or equipment, and unavailability or interruption of operations.

6. DISCLAIMER OF LIABILITY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, NEITHER RECIPIENT NOR ANY
CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING WITHOUT
LIMITATION LOST PROFITS), HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OR DISTRIBUTION OF THE PROGRAM
OR THE EXERCISE OF ANY RIGHTS GRANTED HEREUNDER, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

7. GENERAL

If any provision of this Agreement is invalid or unenforceable under applicable law, it shall not affect the
validity or enforceability of the remainder of the terms of this Agreement, and without further action by the
parties hereto, such provision shall be reformed to the minimum extent necessary to make such provision
valid and enforceable.

If Recipient institutes patent litigation against a Contributor with respect to a patent applicable to software
(including a cross-claim or counterclaim in a lawsuit), then any patent licenses granted by that Contributor
to such Recipient under this Agreement shall terminate as of the date such litigation is filed. In addition, if
Recipient institutes patent litigation against any entity (including a cross-claim or counterclaim in a
lawsuit) alleging that the Program itself (excluding combinations of the Program with other software or
hardware) infringes such Recipient's patent(s), then such Recipient's rights granted under Section 2(b) shall
terminate as of the date such litigation is filed.

All Recipient's rights under this Agreement shall terminate if it fails to comply with any of the material
terms or conditions of this Agreement and does not cure such failure in a reasonable period of time after
becoming aware of such noncompliance. If all Recipient's rights under this Agreement terminate, Recipient
agrees to cease use and distribution of the Program as soon as reasonably practicable. However, Recipient's
obligations under this Agreement and any licenses granted by Recipient relating to the Program shall
continue and survive.

Everyone is permitted to copy and distribute copies of this Agreement, but in order to avoid inconsistency
the Agreement is copyrighted and may only be modified in the following manner. The Agreement Steward
reserves the right to publish new versions (including revisions) of this Agreement from time to time. No
one other than the Agreement Steward has the right to modify this Agreement. IBM is the initial
Agreement Steward. IBM may assign the responsibility to serve as the Agreement Steward to a suitable
separate entity. Each new version of the Agreement will be given a distinguishing version number. The

 - 8 -

Program (including Contributions) may always be distributed subject to the version of the Agreement under
which it was received. In addition, after a new version of the Agreement is published, Contributor may
elect to distribute the Program (including its Contributions) under the new version. Except as expressly
stated in Sections 2(a) and 2(b) above, Recipient receives no rights or licenses to the intellectual property of
any Contributor under this Agreement, whether expressly, by implication, estoppel or otherwise. All rights
in the Program not expressly granted under this Agreement are reserved.

This Agreement is governed by the laws of the State of New York and the intellectual property laws of the
United States of America. No party to this Agreement will bring a legal action under this Agreement more
than one year after the cause of action arose. Each party waives its rights to a jury trial in any resulting
litigation.

 - 9 -

Introduction

This document summarizes in one place the available documentation from the Mondrian open
source project, version 2.2.2. The contents are derived from documentation in the Mondrian code
distribution.

The aim of this document is to provide a guide to the use of Mondrian, covering:

• Mondrian overview and architecture
• Developing OLAP schemas
• Querying cubes with MDX
• Tools and techniques for managing data and tuning query performance
• Integrating Mondrian into applications

The audience of this document is intended to be people creating and managing Mondrian based
OLAP environments and developers who are integrating Mondrian into their applications.

 - 10 -

Mondrian and OLAP

Copyright (C) 2002-2006 Julian Hyde

Mondrian is an Online Analytical Processing (OLAP) engine written in Java. It executes queries
written in the MDX language, reading data from a relational database (RDBMS), and presents the
results in a multidimensional format via a Java API. Let's go into what that means.

Online Analytical Processing

OLAP means analysing large quantities of data in real-time. Unlike Online Transaction Processing
(OLTP), where typical operations read and modify individual and small numbers of records, OLAP
deals with data in bulk, and operations are generally read-only. The term 'online' implies that
even though huge quantities of data are involved — typically many millions of records, occupying
several gigabytes — the system must respond to queries fast enough to allow an interactive
exploration of the data. As we shall see, that presents considerable technical challenges.

OLAP employs a technique called Multidimensional Analysis. Whereas a relational database stores
all data in the form of rows and columns, a multidimensional dataset consists of axes and cells.
Consider the dataset

Year 2000 2001 Growth

Product
Dollar

sales
Unit

sales
Dollar

sales
Unit

sales
Dollar

sales
Unit

sales

Total $7,073 2,693 $7,636 3,008 8% 12%

— Books $2,753 824 $3,331 966 21% 17%

—— Fiction $1,341 424 $1,202 380 -10% -10%

—— Non-fiction $1,412 400 $2,129 586 51% 47%

— Magazines $2,753 824 $2,426 766 -12% -7%

— Greetings

cards
$1,567 1,045 $1,879 1,276 20% 22%

The rows axis consists of the members 'All products', 'Books', 'Fiction', and so forth, and the
columns axis consists of the cartesian product of the years '2000' and '2001', and the calculation
'Growth', and the measures 'Unit sales' and 'Dollar sales'. Each cell represents the sales of a
product category in a particular year; for example, the dollar sales of Magazines in 2001 were
$2,426.

This is a richer view of the data than would be presented by a relational database. The members
of a multidimensional dataset are not always values from a relational column. 'Total', 'Books' and
'Fiction' are members at successive levels in a hierarchy, each of which is rolled up to the next.
And even though it is alongside the years '2000' and '2001', 'Growth' is a calculated member,
which introduces a formula for computing cells from other cells.

The dimensions used here — products, time, and measures — are just three of many dimensions
by which the dataset can be categorized and filtered. The collection of dimensions, hierarchies
and measures is called a cube.

 - 11 -

Although some multidimensional databases store the data in multidimensional format, I shall
argue that it is simpler to store the data in relational format.

 - 12 -

Mondrian Architecture
Copyright (C) 2001-2002 Kana Software, Inc.
Copyright (C) 2001-2007 Julian Hyde

Layers of a Mondrian system

A Mondrian OLAP System consists of four layers; working from the eyes of the end-user to the
bowels of the data center, these are as follows: the presentation layer, the dimensional layer, the
star layer, and the storage layer. (See figure 1.)

The presentation layer determines what the end-user sees on his or her monitor, and how he or
she can interact to ask new questions. There are many ways to present multidimensional
datasets, including pivot tables (an interactive version of the table shown above), pie, line and
bar charts, and advanced visualization tools such as clickable maps and dynamic graphics. These
might be written in Swing or JSP, charts rendered in JPEG or GIF format, or transmitted to a
remote application via XML. What all of these forms of presentation have in common is the
multidimensional 'grammar' of dimensions, measures and cells in which the presentation layer
asks the question is asked, and OLAP server returns the answer.

The second layer is the dimensional layer. The dimensional layer parses, validates and executes
MDX queries. A query is evaluted in multiple phases. The axes are computed first, then the
values of the cells within the axes. For efficiency, the dimensional layer sends cell-requests to the
aggregation layer in batches. A query transformer allows the application to manipulate existing
queries, rather than building an MDX statement from scratch for each request. And metadata
describes the the dimensional model, and how it maps onto the relational model.

The third layer is the star layer, and is responsible for maintaining an aggregate cache. An
aggregation is a set of measure values ('cells') in memory, qualified by a set of dimension column
values. The dimensional layer sends requests for sets of cells. If the requested cells are not in the
cache, or derivable by rolling up an aggregation in the cache, the aggregation manager and
sends a request to the storage layer.

The storage layer is an RDBMS. It is responsible for providing aggregated cell data, and members
from dimension tables. I describe below why I decided to use the features of the RDBMS rather
than developing a storage system optimized for multidimensional data.

These components can all exist on the same machine, or can be distributed between machines.
Layers 2 and 3, which comprise the Mondrian server, must be on the same machine. The storage
layer could be on another machine, accessed via remote JDBC connection. In a multi-user
system, the presentation layer would exist on each end-user's machine (except in the case of JSP
pages generated on the server).

 - 13 -

 - 14 -

Storage and aggregation strategies

OLAP Servers are generally categorized according to how they store their data:

• A MOLAP (multidimensional OLAP) server stores all of its data on disk in structures
optimized for multidimensional access. Typically, data is stored in dense arrays, requiring
only 4 or 8 bytes per cell value.

• A ROLAP (relational OLAP) server stores its data in a relational database. Each row in a
fact table has a column for each dimension and measure.

Three kinds of data need to be stored: fact table data (the transactional records), aggregates,
and dimensions.

MOLAP databases store fact data in multidimensional format, but if there are more than a few
dimensions, this data will be sparse, and the multidimensional format does not perform well. A
HOLAP (hybrid OLAP) system solves this problem by leaving the most granular data in the
relational database, but stores aggregates in multidimensional format.

Pre-computed aggregates are necessary for large data sets, otherwise certain queries could not
be answered without reading the entire contents of the fact table. MOLAP aggregates are often
an image of the in-memory data structure, broken up into pages and stored on disk. ROLAP
aggregates are stored in tables. In some ROLAP systems these are explicitly managed by the
OLAP server; in other systems, the tables are declared as materialized views, and they are
implicitly used when the OLAP server issues a query with the right combination of columns in the
group by clause.

The final component of the aggregation strategy is the cache. The cache holds pre-computed
aggregations in memory so subsequent queries can access cell values without going to disk. If
the cache holds the required data set at a lower level of aggregation, it can compute the required
data set by rolling up.

The cache is arguably the most important part of the aggregation strategy because it is adaptive.
It is difficult to choose a set of aggregations to pre-compute which speed up the system without
using huge amounts of disk, particularly those with a high dimensionality or if the users are
submitting unpredictable queries. And in a system where data is changing in real-time, it is
impractical to maintain pre-computed aggregates. A reasonably sized cache can allow a system
to perform adequately in the face of unpredictable queries, with few or no pre-computed
aggregates.

Mondrian's aggregation strategy is as follows:

• Fact data is stored in the RDBMS. Why develop a storage manager when the RDBMS
already has one?

• Read aggregate data into the cache by submitting group by queries. Again, why develop
an aggregator when the RDBMS has one?

• If the RDBMS supports materialized views, and the database administrator chooses to
create materialized views for particular aggregations, then Mondrian will use them
implicitly. Ideally, Mondrian's aggregation manager should be aware that these

 - 15 -

materialized views exist and that those particular aggregations are cheap to compute. If
should even offer tuning suggestings to the database administrator.

The general idea is to delegate unto the database what is the database's. This places additional
burden on the database, but once those features are added to the database, all clients of the
database will benefit from them. Multidimensional storage would reduce I/O and result in faster
operation in some circumstances, but I don't think it warrants the complexity at this stage.

A wonderful side-effect is that because Mondrian requires no storage of its own, it can be
installed by adding a JAR file to the class path and be up and running immediately. Because there
are no redundant data sets to manage, the data-loading process is easier, and Mondrian is ideally
suited to do OLAP on data sets which change in real time.

API

Mondrian provides an API for client applications to execute queries.

Since there is no widely universally accepted API for executing OLAP queries, Mondrian's primary
API proprietary; however, anyone who has used JDBC should find it familiar. The main difference
is the query language: Mondrian uses a language called MDX ('Multi-Dimensional eXpressions')
to specify queries, where JDBC would use SQL. MDX is described in more detail below.

The following Java fragment connects to Mondrian, executes a query, and prints the results:

import mondrian.olap.*;
import java.io.PrintWriter;

Connection connection = DriverManager.getConnection(
 "Provider=mondrian;" +
 "Jdbc=jdbc:odbc:MondrianFoodMart;" +
 "Catalog=/WEB-INF/FoodMart.xml;",
 null,
 false);
Query query = connection.parseQuery(
 "SELECT {[Measures].[Unit Sales], [Measures].[Store Sales]} on columns," +
 " {[Product].children} on rows " +
 "FROM [Sales] " +
 "WHERE ([Time].[1997].[Q1], [Store].[CA].[San Francisco])");
Result result = connection.execute(query);
result.print(new PrintWriter(System.out));

A Connection is created via a DriverManager, in a similar way to JDBC. A Query is analogous to a
JDBC Statement, and is created by parsing an MDX string. A Result is analogous to a JDBC
ResultSet; since we are dealing with multi-dimensional data, it consists of axes and cells, rather
than rows and columns. Since OLAP is intended for data exploration, you can modify the parse
tree contained in a query by operations such as drillDown and sort, then re-execute the query.

The API also presents the database schema as a set of objects: Schema, Cube, Dimension,
Hierarchy, Level, Member. For more information about the Mondrian API, see the javadoc.

To comply with emerging standards, we are adding two APIs to Mondrian:

 - 16 -

• JOLAP is a standard emerging from the JSR process, and it will become part of J2EE
sometime in 2003. We have a few simple JOLAP queries running in class
mondrian.test.JolapTest.

• XML for Analysis is a standard for accessing OLAP servers via SOAP (Simple Object
Access Protocol). This will allow non-Java components like Microsoft Excel to run queries
against Mondrian.

 - 17 -

How to Design a Mondrian Schema
Copyright (C) 2001-2002 Kana Software, Inc.
Copyright (C) 2002-2007 Julian Hyde and others

What is a schema?

A schema defines a multi-dimensional database. It contains a logical model, consisting of cubes,
hierarchies, and members, and a mapping of this model onto a physical model.

The logical model consists of the constructs used to write queries in MDX language: cubes,
dimensions, hierarchies, levels, and members.

The physical model is the source of the data which is presented through the logical model. It is
typically a star schema, which is a set of tables in a relational database; later, we shall see
examples of other kinds of mappings.

Schema files

Mondrian schemas are represented in an XML file. An example schema, containing almost all of
the constructs we discuss here, is supplied as demo/FoodMart.xml in the mondrian
distribution. The dataset to populate this schema is also in the distribution.

Currently, the only way to create a schema is to edit a schema XML file in a text editor. The XML
syntax is not too complicated, so this is not as difficult as it sounds, particularly if you use the
FoodMart schema as a guiding example.

NOTE: The order of XML elements is important. For example, <UserDefinedFunction>

element has to occur inside the <Schema> element after all collections of <Cube>,

<VirtualCube> , <NamedSet> and <Role> elements. If you include it before the first <Cube>
element, the rest of the schema will be ignored.

Logical model

The most important components of a schema are cubes, measures, and dimensions:

• A cube is a collection of dimensions and measures in a particular subject area.
• A measure is a quantity that you are interested in measuring, for example, unit sales of a

product, or cost price of inventory items.
• A dimension is an attribute, or set of attributes, by which you can divide measures into

sub-categories. For example, you might wish to break down product sales by their color,
the gender of the customer, and the store in which the product was sold; color, gender,
and store are all dimensions.

Let's look at the XML definition of a simple schema.

<Schema>
 <Cube name="Sales">
 <Table name="sales_fact_1997"/>
 <Dimension name="Gender" foreignKey="customer_id">

 - 18 -

 <Hierarchy hasAll="true" allMemberName="All Genders" primaryKey="customer_id">
 <Table name="customer"/>
 <Level name="Gender" column="gender" uniqueMembers="true"/>
 </Hierarchy>
 </Dimension>
 <Dimension name="Time" foreignKey="time_id">
 <Hierarchy hasAll="false" primaryKey="time_id">
 <Table name="time_by_day"/>
 <Level name="Year" column="the_year" type="Numeric" uniqueMembers="true"/>
 <Level name="Quarter" column="quarter" uniqueMembers="false"/>
 <Level name="Month" column="month_of_year" type="Numeric" uniqueMembers="false"/>
 </Hierarchy>
 </Dimension>
 <Measure name="Unit Sales" column="unit_sales" aggregator="sum"
formatString="#,###"/>
 <Measure name="Store Sales" column="store_sales" aggregator="sum"
formatString="#,###.##"/>
 <CalculatedMember name="Profit" dimension="Measures" formula="[Measures].
 [Store Sales]-[Measures].[Store Cost]">
 <CalculatedMemberProperty name="FORMAT_STRING" value="$#,##0.00"/>
</CalculatedMember>
 </Cube>
</Schema>

This schema contains a single cube, called "Sales". The Sales cube has two dimensions, "Time",
and "Gender", and two measures, "Unit Sales" and "Store Sales".

We can write an MDX query on this schema:

SELECT {[Measures].[Unit Sales], [Measures].[Store Sales]} ON COLUMNS,
 {[Time].[1997].[Q1].descendants} ON ROWS
FROM [Sales]
WHERE [Gender].[F]

This query refers to the Sales cube ([Sales]), each of the dimensions [Measures] , [Time] ,

[Gender], and various members of those dimensions. The results are as follows:

[Time] [Measures].[Unit Sales] [Measures].[Store Sales]

[1997].[Q1] 0 0

[1997].[Q1].[Jan] 0 0

[1997].[Q1].[Feb] 0 0

[1997].[Q1].[Mar] 0 0

Now let's look at the schema definition in more detail.

Cube

A cube (see <Cube>) is a named collection of measures and dimensions. The one thing the

measures and dimensions have in common is the fact table, here "sales_fact_1997" . As we

 - 19 -

shall see, the fact table holds the columns from which measures are calculated, and contains
references to the tables which hold the dimensions.

<Cube name="Sales">
<Table name="sales_fact_1997"/>
...
</ Cube>

The fact table is defined using the <Table> element. If the fact table is not in the default

schema, you can provide an explicit schema using the "schema" attribute, for example

<Table schema=" dmart" name="sales_fact_1997"/>

You can also use the <View> and <Join> constructs to build more complicated SQL statements.

Measures

The Sales cube defines several measures, including "Unit Sales" and "Store Sales".

<Measure name="Unit Sales" column="unit_sales"
aggregator="sum" datatype="Integer" formatString="# ,###"/>
<Measure name="Store Sales" column="store_sales"
aggregator="sum" datatype="Numeric" formatString="# ,###.00"/>

Each measure (see <Measure>) has a name, a column in the fact table, and an aggregator .
The aggregator is usually "sum", but "count", "mix", "max", "avg", and "distinct count" are also
allowed; "distinct count" has some limitations if your cube contains a parent-child hierarchy.

The optional datatype attribute specifies how cell values are represented in Mondrian's cache,

and how they are returned via XML for Analysis. The datatype attribute can have values

"String ", "Integer " and "Numeric ". The default is "Numeric ", except for "count " and

"distinct-count " measures, which are "Integer ".

An optional formatString attribute specifies how the value is to be printed. Here, we have
chosen to output unit sales with no decimal places (since it is an integer), and store sales with
two decimal places (since it is a currency value). The ',' and '.' symbols are locale-sensitive, so if
you were running in Italian, store sales might appear as "48.123,45". You can achieve even more
wild effects using advanced format strings.

A measure can have a caption attribute to be returned by the Member.getCaption() method

instead of the name. Defining a specific caption does make sense if special letters (e.g. Σ or Π)
are to be displayed:

<Measure name="Sum X" column="sum_x" aggregator="sum" capti on="Σ
X"/>

Rather than coming from a column, a measure can use a cell reader, or a measure can use a SQL
expression to calculate its value. The measure "Promotion Sales" is an example of this.

<Measure name="Promotion Sales" aggregator="sum"
formatString="#,###.00">

 - 20 -

<MeasureExpression >
<SQL dialect="generic">
(case when sales_fact_1997.promotion_id =
0 then 0 else sales_fact_1997.store_sales end)
</ SQL>
</ MeasureExpression >
</ Measure >

In this case, sales are only included in the summation if they correspond to a promotion sales.
Arbitrary SQL expressions can be used, including subqueries. However, the underlying database
must be able to support that SQL expression in the context of an aggregate. Variations in syntax
between different databases is handled by specifying the dialect in the SQL tag.

In order to provide a specific formatting of the cell values, a measure can use a cell formatter.

Dimensions, Hierarchies, Levels

Some more definitions:

• A member is a point within a dimension determined by a particular set of attribute
values. The gender hierarchy has the two members 'M' and 'F'. 'San Francisco',
'California' and 'USA' are all members of the store hierarchy.

• A hierarchy is a set of members organized into a structure for convenient analysis. For
example, the store hierarchy consists of the store name, city, state, and nation. The
hierarchy allows you form intermediate sub-totals: the sub-total for a state is the sum of
the sub-totals of all of the cities in that state, each of which is the sum of the sub-totals
of the stores in that city.

• A level is a collection of members which have the same distance from the root of the
hierarchy.

• A dimension is a collection of hierarchies which discriminate on the same fact table
attribute (say, the day that a sale occurred).

For reasons of uniformity, measures are treated as members of a special dimension, called
'Measures'.

An example

Let's look at a simple dimension.

<Dimension name="Gender" foreignKey="customer_id">
 < Hierarchy hasAll="true" primaryKey="customer_id">
 < Table name="customer"/>
 < Level name="Gender" column="gender" uniqueMembers="true" />
 </ Hierarchy >
</ Dimension >

This dimension consists of a single hierarchy, which consists of a single level called Gender . (As

we shall see later, there is also a special level called [(All)] containing a grand total.)

 - 21 -

The values for the dimension come fom the gender column in the customer table. The
"gender" column contains two values, 'F' and 'M', so the Gender dimension contains the members
[Gender].[F] and [Gender].[M] .

For any given sale, the gender dimension is the gender of the customer who made that
purchase. This is expressed by joining from the fact table "sales_fact_1997.customer_id" to the
dimension table "customer.customer_id".

Mapping dimensions and hierarchies onto tables

A dimension is joined to a cube by means of a pair of columns, one in the fact table, the other in
the dimension table. The <Dimension> element has a foreignKey attribute, which is the

name of a column in the fact table; the <Hierarchy> element has primaryKey attribute.

If the hierarchy has more than one table, you can disambiguate using the primaryKeyTable

attribute.

The uniqueMembers attribute is used to optimize SQL generation. If you know that the values
of a given level column in the dimension table are unique across all the other values in that
column across the parent levels, then set uniqueMembers="true" , otherwise, set to

"false" . For example, a time dimension like [Year].[Month] will have

uniqueMembers="false" at the Month level, as the same month appears in different years.

On the other hand, if you had a [Product Class].[Product Name] hierarchy, and you

were sure that [Product Name] was unique, then you can set uniqueMembers="true" . If

you are not sure, then always set uniqueMembers="false" . At the top level, this will always

be uniqueMembers="true" , as there is no parent level.

The 'all' member

By default, every hierarchy contains a top level called '(All) ', which contains a single member

called '(All { hierarchyName}) '. This member is parent of all other members of the
hierarchy, and thus represents a grand total. It is also the default member of the hierarchy; that
is, the member which is used for calculating cell values when the hierarchy is not included on an
axis or in the slicer. The allMemberName and allLevelName attributes override the default

names of the all level and all member.

If the <Hierarchy> element has hasAll="false" , the 'all' level is suppressed. The default
member of that dimension will now be the first member of the first level; for example, in a Time
hierarchy, it will be the first year in the hierarchy. Changing the default member can be
confusing, so you should generally use hasAll="true" .

Time dimensions

Time dimensions based on year/month/week/day are coded differently in the Mondrian schema
due to the MDX time related functions such as:

• ParallelPeriod([level[, index[, member]]])

• PeriodsToDate([level[, member]])

• WTD([member])

 - 22 -

• MTD([member])

• QTD([member])

• YTD([member])

• LastPeriod(index[, member])

Time dimensions have type="TimeDimension" . The role of a level in a time dimension is

indicated by the level's levelType attribute, whose allowable values are as follows:

levelType value Meaning

TimeYears Level is a year

TimeQuarters Level is a quarter

TimeMonths Level is a month

TimeDays Level represents days

Here is an example of a time dimension:

<Dimension name="Time" type="TimeDimension">
 < Hierarchy hasAll="true" allMemberName="All Periods"
primaryKey="dateid">
 < Table name="datehierarchy"/>
 < Level name="Year" column="year" uniqueMembers="true"
levelType="TimeYears" type="Numeric"/>
 < Level name="Quarter" column="quarter"
uniqueMembers="false" levelType="TimeQuarters" />
 < Level name="Month" column="month" uniqueMembers="false"
ordinalColumn="month" nameColumn="month_name"
levelType="TimeMonths" type="Numeric"/>
 < Level name="Week" column="week_in_month"
uniqueMembers="false" levelType="TimeWeeks" />
 < Level name="Day" column="day_in_month"
uniqueMembers="false" ordinalColumn="day_in_month"
nameColumn="day_name" levelType="TimeDays" type="Nu meric"/>
 </ Hierarchy >
</ Dimension >

Order and display of levels

Notice that in the time hierarchy example above the ordinalColumn and nameColumn

attributes on the <Level> element. These effect how levels are displsyed in a result. The

ordinalColumn attribute specifies a column in the Hierarchy table that provides the order of

the members in a given Level, while the nameColumn specifies a column that will be displayed.

For example, in the Month Level above, the datehierarchy table has month (1 .. 12) and
month_name (January, February, ...) columns. The column value that will be used internally
within MDX is the month column, so valid member specifications will be of the form:
[Time].[2005].[Q1].[1] . Members of the [Month] level will displayed in the order

January, February, etc.

 - 23 -

Multiple hierarchies

A dimension can contain more than one hierarchy:

<Dimension name="Time" foreignKey="time_id">
 < Hierarchy hasAll="false" primaryKey="time_id">
 < Table name="time_by_day"/>
 < Level name="Year" column="the_year" type="Numeric"
 uniqueMembers="true"/>
 < Level name="Quarter" column="quarter"
 uniqueMembers="false"/>
 < Level name="Month" column="month_of_year"
 type="Numeric" uniqueMembers="false"/>
 </ Hierarchy >
 < Hierarchy name="Time Weekly" hasAll="false"
 primaryKey="time_id">
 < Table name="time_by_week"/>
 < Level name="Year" column="the_year" type="Numeric"
 uniqueMembers="true"/>
 < Level name="Week" column="week"
 uniqueMembers="false"/>
 < Level name="Day" column="day_of_week" type="String"
 uniqueMembers="false"/>
 </ Hierarchy >
</ Dimension >

Notice that the first hierarchy doesn't have a name. By default, a hierarchy has the same name
as its dimension, so the first hierarchy is called "Time".

These hierarchies don't have much in common — they don't even have the same table! — except
that they are joined from the same column in the fact table, "time_id" . The main reason to
put two hierarchies in the same dimension is because it makes more sense to the end-user: end-
users know that it makes no sense to have the "Time" hierarchy on one axis and the "Time
Weekly" hierarchy on another axis. If two hierarchies are the same dimension, the MDX language
enforces common sense, and does not allow you to use them both in the same query.

Degenerate dimensions

A degenerate dimension is a dimension which is so simple that it isn't worth creating its own
dimension table. For example, consider following the fact table:

product_id time_id payment_method customer_id store_id item_count dollars

55 20040106 Credit 123 22 3 $3.54

78 20040106 Cash 89 22 1 $20.00

199 20040107 ATM 3 22 2 $2.99

55 20040106 Cash 122 22 1 $1.18

 - 24 -

and suppose we created a dimension table for the values in the payment_method column:

payment_method

Credit

Cash

ATM

This dimension table is fairly pointless. It only has 3 values, adds no additional information, and
incurs the cost of an extra join.

Instead, you can create a degenerate dimension. To do this, declare a dimension without a table,
and Mondrian will assume that the columns come from the fact table.

<Cube name="Checkout">
 <!-- The fact table is always necessary. -->
 < Table name="checkout">
 < Dimension name="Payment method">
 < Hierarchy hasAll="true">
 <!-- No table element here.
 Fact table is assumed. -->
 < Level name="Payment method"
 column="payment_method" uniqueMembers="true" />
 </ Hierarchy >
 </ Dimension >
 <!-- other dimensions and measures -->
</ Cube>

Note that because there is no join, the foreignKey attribute of Dimension is not necessary,

and the Hierarchy element has no <Table> child element or primaryKey attribute.

Inline tables

The <InlineTable > construct allows you to define a dataset in the schema file. You must
declare the names of the columns, the column types ("String" or "Numeric"), and a set of rows.
As for <Table > and <View >, you must provide a unique alias with which to refer to the dataset.

Here is an example:

<Dimension name="Severity">
 < Hierarchy hasAll="true" primaryKey="severity_id">
 < InlineTable alias="severity">
 < ColumnDefs >
 < ColumnDef name="id" type="Numeric"/>
 < ColumnDef name="desc" type="String"/>
 </ ColumnDefs >
 < Rows>
 < Row>
 < Value column="id">1</ Value >
 < Value column="desc">High</ Value >
 </ Row>
 < Row>
 < Value column="id">2</ Value >

 - 25 -

 < Value column="desc">Medium</ Value >
 </ Row>
 < Row>
 < Value column="id">3</ Value >
 < Value column="desc">Low</ Value >
 </ Row>
 </ Rows>
 </ InlineTable >
 < Level name="Severity" column="id" nameColumn="desc"
uniqueMembers="true"/>
 </ Hierarchy >
</ Dimension >

This has the same effect as if you had a table called 'severity' in your database:

id desc

1 High

2 Medium

3 Low

and the declaration

<Dimension name="Severity">
 < Hierarchy hasAll="true" primaryKey="severity_id">
 < Table name="severity"/>
 < Level name="Severity" column="id" nameColumn="desc"
uniqueMembers="true"/>
 </ Hierarchy >
</ Dimension >

To specify a NULL value for a column, omit the <Value> for that column, and the column's value
will default to NULL.

Member properties and formatters

As we shall see later, a level definition can also define member properties and a member
formatter.

Approximate level cardinality

The <Level> element allows specifying the optional attribute "approxRowCount". Specifying
approxRowCount can improve performance by reducing the need to determine level, hierarchy,
and dimension cardinality. This can have a significant impact when connecting to Mondrian via
XMLA.

Star and snowflake schemas

We saw earlier how to build a cube based upon a fact table, and dimensions in the fact table
("Payment method") and in a table joined to the fact table ("Gender"). This is the most common
kind of mapping, and is known as a star schema.

 - 26 -

But a dimension can be based upon more than one table, provided that there is a well-defined
path to join these tables to the fact table. This kind of dimension is known as a snowflake, and is
defined using the <Join > operator. For example:

<Cube name="Sales">
 ...
 < Dimension name="Product" foreignKey="product_id">
 < Hierarchy hasAll="true" primaryKey="product_id"
primaryKeyTable="product">
 < Join leftKey="product_class_key" rightAlias="product_cl ass"
rightKey="product_class_id">
 < Table name="product"/>
 < Join leftKey="product_type_id" rightKey="product_type_i d">
 < Table name="product_class"/>
 < Table name="product_type"/>
 </ Join >
 </ Join >
 <!-- Level declarations ... ->
 </ Hierarchy >
 </ Dimension >
</ Cube>

This defines a "Product" dimension consisting of three tables. The fact table joins to

"product" (via the foreign key "product_id"), which joins to "product_class" (via the

foreign key "product_class_id"), which joins to " product_type" (via the foreign key

"product_type_id"). We require a <Join> element nested within a <Join> element

because <Join> takes two operands; the operands can be tables, joins, or even queries.

The arrangement of the tables seems complex, the simple rule of thumb is to order the tables by
the number of rows they contain. The "product" table has the most rows, so it joins to the fact

table and appears first; "product_class" has fewer rows, and "product_type" , at the tip

of the snowflake, has least of all.

Note that the outer <Join> element has a rightAlias attribute. This is necessary because the

right component of the join (the inner <Join> element) consists of more than one table. No

leftAlias attribute is necessary in this case, because the leftKey column unambiguously

comes from the "product" table.

Shared dimensions

When generating the SQL for a join, mondrian needs to know which column to join to. If you are
joining to a join, then you need to tell it which of the tables in the join that column belongs to
(usually it will be the first table in the join).

Because shared dimensions don't belong to a cube, you have to give them an explicit table (or
other data source). When you use them in a particular cube, you specify the foreign key. This
example shows the Store Type dimension being joined to the Sales cube using the

sales_fact_1997.store_id foreign key, and to the Warehouse cube using the

warehouse.warehouse_store_id foreign key:

<Dimension name="Store Type">
 < Hierarchy hasAll="true" primaryKey="store_id">

 - 27 -

 < Table name="store"/>
 < Level name="Store Type" column="store_type" uniqueMember s="true"/>
 </ Hierarchy >
</ Dimension >

<Cube name="Sales">
 < Table name="sales_fact_1997"/>
 ...
 < DimensionUsage name="Store Type" source="Store Type"
foreignKey="store_id"/>
</ Cube>

<Cube name="Warehouse">
 < Table name="warehouse"/>
 ...
 < DimensionUsage name="Store Type" source="Store Type"
foreignKey="warehouse_store_id"/>
</ Cube>

Join optimization

The table mapping in the schema tells Mondrian how to get the data, but Mondrian is smart
enough not to read the schema literally. It applies a number of optimizations when generating
queries:

• If a dimension has a small number of members, Mondrian reads it into a cache on first
use. See the mondrian.rolap.LargeDimensionThreshold property.

• If a dimension (or, more precisely, the level of the dimension being accessed) is in the
fact table, Mondrian does not perform a join.

• If two dimensions access the same table via the same join path, Mondrian only joins
them once. For example, [Gender] and [Age] might both be columns in the

customers table, joined via sales_1997.cust_id = customers.cust_id .

Advanced logical constructs

Virtual cubes

Defined by the <VirtualCube> element. (To be continued...)

Parent-child hierarchies

A conventional hierarchy has a rigid set of levels, and members which adhere to those levels. For
example, in the Product hierarchy, any member of the Product Name level has a parent in

the Brand Name level, which has a parent in the Product Subcategory level, and so forth.
This structure is sometimes too rigid to model real-world data.

A parent-child hierarchy has only one level (not counting the special 'all' level), but any member
can have parents in the same level. A classic example is the reporting structure in the
Employees hierarchy:

 - 28 -

<Dimension name="Employees" foreignKey="employee_id">
 < Hierarchy hasAll="true" allMemberName="All Employees"
primaryKey="employee_id">
 < Table name="employee"/>
 < Level name="Employee Id" uniqueMembers="true" type="Nume ric"
 column="employee_id" nameColumn="full_name"
 parentColumn="supervisor_id" nullParentValu e="0">
 < Property name="Marital Status" column="marital_status"/>
 < Property name="Position Title" column="position_title"/>
 < Property name="Gender" column="gender"/>
 < Property name="Salary" column="salary"/>
 < Property name="Education Level" column="education_level"/>
 < Property name="Management Role" column="management_role"/>
 </ Level >
 </ Hierarchy >
</ Dimension >

The important attributes here are parentColumn and nullParentValue :

• The parentColumn attribute is the name of the column which links a member to its

parent member; in this case, it is the foreign key column which points to an employee's
supervisor. The <ParentExpression> child element of <Level> is equivalent to the

parentColumn attribute, but allows you to define an arbitrary SQL expression, just like

the <Expression> element. The parentColumn attribute (or <ParentExpression>

element) is the only indication to Mondrian that a hierarchy has a parent-child structure.
• The nullParentValue attribute is the value which indicates that a member has no

parent. The default is nullParentValue="null" , but since many database don't

index null values, schema designers sometimes use values as the empty string, 0, and -1
instead.

Tuning parent-child hierarchies

There's one serious problem with the parent-child hierarchy defined above, and that is the
amount of work Mondrian has to do in order to compute cell-totals. Let's suppose that the
employee table contains the following data:

employee

supervisor_id employee_id full_name

null 1 Frank

1 2 Bill

2 3 Eric

1 4 Jane

3 5 Mark

2 6 Carla

If we want to compute the total salary budget for Bill, we need to add in the salaries of Eric and
Carla (who report to Bill) and Mark (who reports to Eric). Usually Mondrian generates a SQL
GROUP BY statement to compute these totals, but there is no (generally available) SQL construct

which can traverse hierarchies. So by default, Mondrian generates one SQL statement per
supervisor, to retrieve and total all of that supervisor's direct reports.

 - 29 -

This approach has a couple of drawbacks. First, the performance is not very good if a hierarchy
contains more than a hundred members. Second, because Mondrian implements the "distinct
count" aggregator by generating SQL, you cannot define a "distinct count" member in any cube
which contains a parent-child hierarchy.

How can we solve these problems? The answer is to enhance the data so that Mondrian is able
to retrieve the information it needs using standard SQL. Mondrian supports a mechanism called a
closure table for this purpose.

Closure tables

A closure table is a SQL table which contains a record for every employee/supervisor relationship,
regardless of depth. (In mathematical terms, this is called the 'reflexive transitive closure' of the
employee/supervisor relationship. The distance column is not strictly required, but it makes it
easier to populate the table.)

employee_closure

supervisor_id employee_id distance

1 1 0

1 2 1

1 3 2

1 4 1

1 5 3

1 6 2

2 2 0

2 3 1

2 5 2

2 6 1

3 3 0

3 5 1

4 4 0

5 5 0

6 6 0

In the catalog XML, the <Closure > element maps the level onto a <Table >:

<Dimension name="Employees" foreignKey="employee_id">
 < Hierarchy hasAll="true" allMemberName="All Employees"
primaryKey="employee_id">
 < Table name="employee"/>
 < Level name="Employee Id" uniqueMembers="true" type="Nume ric"
 column="employee_id" nameColumn="full_name"
 parentColumn="supervisor_id" nullParentValu e="0">
 < Closure parentColumn="supervisor_id" childColumn="employee _id">
 < Table name="employee_closure"/>
 </ Closure >
 < Property name="Marital Status" column="marital_status"/>
 < Property name="Position Title" column="position_title"/>

 - 30 -

 < Property name="Gender" column="gender"/>
 < Property name="Salary" column="salary"/>
 < Property name="Education Level" column="education_level"/>
 < Property name="Management Role" column="management_role"/>
 </ Hierarchy >
</ Dimension >

This table allows totals to be evaluated in pure SQL. Even though this introduces an extra able
into the query, database optimizers are very good at handling joins. I recommend that you
declare both supervisor_id and employee_id NOT NULL, and index them as follows:

CREATE UNIQUE INDEX employee_closure_pk ON employee _closure (
 supervisor_id,
 employee_id
);
CREATE INDEX employee_closure_emp ON employee_closu re (
 employee_id
);

The table needs to be re-populated whenever the hierarchy changes, and it is the application's
responsibility to do so -- Mondrian does not do this! Here is an example of a stored procedure
that computes a closure table.

CREATE PROCEDURE close_employee()
BEGIN
 DECLARE distance int;
 TRUNCATE TABLE employee_closure;
 SET distance = 0;
 -- seed closure with self-pairs (distance 0)
 INSERT INTO employee_closure (supervisor_id, empl oyee_id, distance)
 SELECT employee_id, employee_id, distance
 FROM employee;

 -- for each pair (root, leaf) in the closure,
 -- add (root, leaf->child) from the base table
 REPEAT
 SET distance = distance + 1;
 INSERT INTO employee_closure (supervisor_id, em ployee_id, distance)
 SELECT employee_closure.supervisor_id, employ ee.employee_id,
distance
 FROM employee_closure, employee
 WHERE employee_closure.employee_id = empl oyee.supervisor_id
 AND employee_closure.distance = distance - 1;
 UNTIL (ROW_COUNT() == 0))
 END REPEAT
END

Member properties

Member properties are defined by the <Property> element within a <Level >, like this:

<Level name="MyLevel" column="LevelColumn" uniqueMembers= "true"/>
<Property name="MyProp" column="PropColumn"

 - 31 -

formatter="com.acme.MyPropertyFormatter"/>
<Level />

The formatter attribute defines a property formatter, which is explained later.

Once properties have been defined in the schema, you can use them in MDX statements via the
member.Properties(" propertyName") function, for example:

SELECT {[Store Sales]} ON COLUMNS,
 TopCount(Filter([Store].[Store Name].Members,
 [Store].CurrentMember.Properties("Store Type") =
"Supermarket"),
 10,
 [Store Sales]) ON ROWS
FROM [Sales]

Mondrian deduces the type of the property expression, if it can. If the property name is a
constant string, the type is based upon the type attribute ("String", "Numeric" or "Boolean") of
the property definition. If the property name is an expression (for example
CurrentMember.Properties("Store " + "Type")), Mondrian will return an untyped

value.

Calculated members

Suppose you want to create a measure whose value comes not from a column of the fact table,
but from an MDX formula. One way to do this is to use a WITH MEMBER clause, like this:

WITH MEMBER [Measures].[Profit] AS '[Measures].[Sto re Sales]-
[Measures].[Store Cost]',
 FORMAT_STRING = '$#,###'
SELECT {[Measures].[Store Sales], [Measures].[Profi t]} ON COLUMNS,
 {[Product].Children} ON ROWS
FROM [Sales]
WHERE [Time].[1997]

But rather than including this clause in every MDX query of your application, you can define the
member in your schema, as part of your cube definition:

<CalculatedMember name="Profit" dimension="Measures">
 < Formula >[Measures].[Store Sales] - [Measures].[Store Cost] </ Formula >
 < CalculatedMemberProperty name="FORMAT_STRING" value="$#,##0.00"/>
</ CalculatedMember >

You can also declare the formula as an XML attribute, if you prefer. The effect is just the same.

<CalculatedMember name="Profit" dimension="Measures"
 formula="[Measures].[Store Sales]-[Measures].[S tore Cost]">
 < CalculatedMemberProperty name="FORMAT_STRING" value="$#,##0.00"/>
</ CalculatedMember >

 - 32 -

Note that the <CalculatedMemberProperty > (not <Property >) element corresponds to

the FORMAT_STRING = '$#,###' fragment of the MDX statement. You can define other

properties here too, but FORMAT_STRING is by far the most useful in practice.

The FORMAT_STRING property value can also be evaluated using an expression. When
formatting a particular cell, first the expression is evaluated to yield a format string, then the
format string is applied to the cell value. Here is the same property with a conditional format
string:

 < CalculatedMemberProperty name="FORMAT_STRING" expression="Iif(Value
< 0, '|($#,##0.00)|style=red', '|$#,##0.00|style=gr een')"/>

For more details about format strings, see the MDX specification.

You can make a calculated member or a measure invisible. If you specify visible="false"
(the default is "true") in the <Measure > or < CalculatedMember > element, user-interfaces
such as JPivot will notice this property and hide the member. This is useful if you want to
perform calculations in a number of steps, and hide intermediate steps from end-users. For
example, here only "Margin per Sqft" is visible, and its factors "Store Cost", "Margin" and "Store
Sqft" are hidden:

<Measure
 name="Store Cost"
 column="store_cost"
 aggregator="sum"
 formatString="#,###.00"
 visible="false"/>
<CalculatedMember
 name="Margin"
 dimension="Measures"
 visible="false">
 < Formula >([Measures].[Store Sales] - [Measures].[Store Cost]) /
[Measures].[Store Cost]</ Formula >
<CalculatedMember
 name="Store Sqft"
 dimension="Measures"
 visible="false">
 < Formula >[Store].Properties("Sqft")</ Formula >
<CalculatedMember
 name="Margin per Sqft"
 dimension="Measures"
 visible="true">
 < Formula >[Measures].[Margin] / [Measures].[Store Cost]</ Formula >
 < CalculatedMemberProperty name="FORMAT_STRING" value="$#,##0.00"/>
</ CalculatedMember >

Named sets

The WITH SET clause of an MDX statement allows you to declare a set expression which can be
used throughout that query. For example,

WITH SET [Top Sellers] AS
 'TopCount([Warehouse].[Warehouse Name].MEMBERS, 5,

 - 33 -

[Measures].[Warehouse Sales])'
SELECT
 {[Measures].[Warehouse Sales]} ON COLUMNS,
 {[Top Sellers]} ON ROWS
FROM [Warehouse]
WHERE [Time].[Year].[1997]

The WITH SET clause is very similar to the WITH MEMBER clause, and as you might expect, it

has a construct in schema analogous to < CalculatedMember >. The <NamedSet> element

allows you to define a named set in your schema as part of a cube definition. It is implicitly
available for any query against that cube:

<Cube name="Warehouse">
 ...
 < NamedSet name="Top Sellers">
 < Formula >TopCount([Warehouse].[Warehouse Name].MEMBERS, 5,
[Measures].[Warehouse Sales])</ Formula >
 </ NamedSet>
</ Cube>
SELECT
 {[Measures].[Warehouse Sales]} ON COLUMNS,
 {[Top Sellers]} ON ROWS
FROM [Warehouse]
WHERE [Time].[Year].[1997]

Warehouse Warehouse Sales

Treehouse Distribution 31,116.37

Jorge Garcia, Inc. 30,743.77

Artesia Warehousing, Inc. 29,207.96

Jorgensen Service Storage 22,869.79

Destination, Inc. 22,187.42

A named set defined against a cube is not inherited by a virtual cubes defined against that cube.
(But you can define a named set against a virtual cube.)

You can also define a named set as global to a schema:

<Schema>
 < Cube name="Sales" ... />
 < Cube name="Warehouse" ... />
 < VirtualCube name="Warehouse and Sales" .../>
 < NamedSet name="CA Cities" formula="{[Store].[USA].[CA].Chil dren}"/>
 < NamedSet name="Top CA Cities">
 < Formula >TopCount([CA Cities], 2, [Measures].[Unit
Sales])</ Formula >
 </ NamedSet>
</ Schema>

A named set defined against a schema is available in all cubes and virtual cubes in that schema.
However, it is only valid if the cube contains dimensions with the names required to make the
formula valid. For example, it would be valid to use [CA Cities] in queries against the

[Sales] and [Warehouse and Sales] cubes, but if you used it in a query against the

 - 34 -

[Warehouse] cube you would get an error, because [Warehouse] does not have a [Store]
dimension.

Plug-ins

Sometimes Mondrian's schema language isn't flexible enough, or the MDX language isn't powerful
enough, to solve the problem at hand. What you want to do is add a little of your own Java code
into the Mondrian application, and a plug-in is a way to do this.

Each of Mondrian's extensions is technically a Service Provider Interface (SPI); in short, a Java
interface which you write code to implement, and which Mondrian will call at runtime. You also
need to register an extension (usually somewhere in your schema.xml file) and to ensure that it
appears on the classpath.

Plug-ins include user-defined functions; cell, member and property formatters; and dynamic
schema processors. There is incomplete support for member readers and cell readers, and in
future we may support pluggable SQL dialects.

User-defined function

A user-defined function must have a public constructor and implement the
mondrian.spi.UserDefinedFunction interface. For example,

package com.acme;

import mondrian.olap.*;
import mondrian.olap.type.*;
import mondrian.spi.UserDefinedFunction;

/**
 * A simple user-defined function which adds one to its argument.
 */
public class PlusOneUdf implements UserDefinedFunct ion {
 // public constructor
 public PlusOneUdf() {
 }

 public String getName() {
 return "PlusOne";
 }

 public String getDescription() {
 return "Returns its argument plus one";
 }

 public Syntax getSyntax() {
 return Syntax.Function;
 }

 public Type getReturnType(Type[] parameterTypes) {
 return new NumericType();
 }

 - 35 -

 public Type[] getParameterTypes() {
 return new Type[] {new NumericType()};
 }

 public Object execute(Evaluator evaluator, Exp[] arguments) {
 final Object argValue = arguments[0].evalua teScalar(evaluator);
 if (argValue instanceof Number) {
 return new Double(((Number) argValue).d oubleValue() + 1);
 } else {
 // Argument might be a RuntimeException indicating that
 // the cache does not yet have the requ ired cell value. The
 // function will be called again when t he cache is loaded.
 return null;
 }
 }

 public String[] getReservedWords() {
 return null;
 }
}

Declare it in your schema:

<Schema>
 ...
 < UserDefinedFunction name="PlusOne" class="com.acme.PlusOneUdf">
</ Schema>

And use it in any MDX statement:

WITH MEMBER [Measures].[Unit Sales Plus One]
 AS 'PlusOne([Measures].[Unit Sales])'
SELECT
 {[Measures].[Unit Sales]} ON COLUMNS,
 {[Gender].MEMBERS} ON ROWS
FROM [Sales]

If a user-defined function has a public constructor with one string argument, Mondrian will pass
in the function's name. Why? This allows you to define two or more user-defined functions using
the same class:

package com.acme;

import mondrian.olap.*;
import mondrian.olap.type.*;
import mondrian.spi.UserDefinedFunction;

/**
 * A user-defined function which either adds one to or
 * subtracts one from its argument.
 */
public class PlusOrMinusOneUdf implements UserDefin edFunction {
 private final name;
 private final isPlus;

 - 36 -

 // public constructor with one argument
 public PlusOneUdf(String name) {
 this.name = name;
 if (name.equals("PlusOne")) {
 isPlus = true;
 } else if (name.equals("MinusOne")) {
 isPlus = false;
 } else {
 throw new IllegalArgumentException("Une xpected name " +
name);
 }
 }

 public String getName() {
 return name;
 }

 public String getDescription() {
 return "Returns its argument plus or minus one";
 }

 public Syntax getSyntax() {
 return Syntax.Function;
 }

 public Type getReturnType(Type[] parameterTypes) {
 return new NumericType();
 }

 public Type[] getParameterTypes() {
 return new Type[] {new NumericType()};
 }

 public Object execute(Evaluator evaluator, Exp[] arguments) {
 final Object argValue = arguments[0].evalua teScalar(evaluator);
 if (argValue instanceof Number) {
 if (isPlus) {
 return new Double(((Number) argValu e).doubleValue() +
1);
 } else {
 return new Double(((Number) argValu e).doubleValue() -
1);
 }
 } else {
 // Argument might be a RuntimeException indicating that
 // the cache does not yet have the requ ired cell value. The
 // function will be called again when t he cache is loaded.
 return null;
 }
 }

 public String[] getReservedWords() {
 return null;
 }
}

 - 37 -

and register two the functions in your schema:

<Schema>
 ...
 < UserDefinedFunction name="PlusOne"
class="com.acme.PlusOrMinusOneUdf">
 < UserDefinedFunction name="MinusOne"
class="com.acme.PlusOrMinusOneUdf">
</ Schema>

If you're tired of writing duplicated User-defined Function declarations in schema files, you can
pack your User-defined Function implemention classes into a jar file with a embedded resource
file META-INF/services/mondrian.spi.UserDefinedFunction. This resource file contains class names
of implementations of interface mondrian.spi.UserDefinedFunction, one name per line. For more
details, you may look into src/main/META-INF/services/mondrian.spi.UserDefinedFunction in
source ball and Service Provider. User-defined Functions declared by this means are available to
all mondrian schema in one JVM.

Caution: you can't define more than one User-defined Function implementations in one class
when you declare User-defined Functions in this way.

Member reader

A member reader is a means of accessing members. Hierarchies are usually based upon a
dimension table (an 'arm' of a star schema), and are therefore populated using SQL. But even if
your data doesn't reside in an RDBMS, you can make it appear as a hierarchy by writing a Java
class called a custom member reader.

Here are a couple of examples:

1. DateSource (to be written) generates a time hierarchy. Conventionally, data warehouse

implementors generate a table containing a row for every date their system is ever likely
to deal with. But the problem is that this table needs to be loaded, and as time goes by,
they will have to remember to add more rows. DateSource generates date members in
memory, and on demand.

2. FileSystemSource (to be written) presents the file system as a hierarchy of

directories and files. Since a directory can have a parent which is itself a directory, it is a
parent-child hierarchy. Like the time hierarchy created by DateSource, this is a virtual
hierarchy: the member for a particular file is only created when, and if, that file's parent
directory is expanded.

3. ExpressionMemberReader (to be written) creates a hierarchy based upon an
expression.

A custom member reader must implement the mondrian.rolap.MemberSource interface. If you
need to implement a larger set of member operations for fine-grained control, implement the
derived mondrian.rolap.MemberReader interface; otherwise, Mondrian wrap your reader in a
mondrian.rolap.CacheMemberReader object. Your member reader must have a public constructor
which takes (RolapHierarchy , Properties) parameters, and throws no checked
exceptions.

 - 38 -

Member readers are declared using the <Hierarchy> element's memberReaderClass

attribute; any <Parameter> child elements are passed via the properties constructor

parameter. Here is an example:

<Dimension name="Has bought dairy">
 < Hierarchy hasAll="true"
memberReaderClass="mondrian.rolap.HasBoughtDairySou rce">
 < Level name="Has bought dairy" uniqueMembers="true"/>
 < Parameter name="expression" value="not used"/>
 </ Hierarchy >
</ Dimension >

Cell reader

Not implemented yet. Syntax would be something like

<Measure name="name" cellReaderClass= "com.acme.MyCellReade r"/>

and the class "com.acme.MyCellReader" would have to implement the
mondrian.olap.CellReader interface.

Cell formatter

A cell formatter modifies the behavior of Cell.getFormattedValue() . The class must

implement the mondrian.olap.CellFormatter interface, and is specified like this:

<Measure name="name" formatter="com.acme.MyCellFormatter"/>

Member formatter

A member formatter modifies the behavior of Member.getCaption() . The class must

implement the mondrian.olap.MemberFormatter interface, and is specified like this:

<Level column="column" name="name"
formatter="com.acme.MyMemberFormatter"/>

Property formatter

A property formatter modifies the behavior of Property.getPropertyFormattedValue() .

The class must implement the mondrian.olap.PropertyFormatter interface, and is

specified like this:

<Level name="MyLevel" column="LevelColumn" uniqueMembers= "true"/>
<Property name="MyProp" column="PropColumn"
formatter="com.acme.MyPropertyFormatter"/>
<Level />

 - 39 -

Schema processor

A schema processor implements the mondrian.rolap.DynamicSchemaProcessor interface.

It is specified as part of the connection string, like this:

Jdbc=jdbc:odbc:MondrianFoodMart; JdbcUser=ziggy; Jd bcPassword=stardust;
DynamicSchemaProcessor=com.acme.MySchemaProcessor

The effect is that when reading the contents of the schema from a URL, Mondrian turns to the
schema processor rather than Java's default URL handler. This gives the schema reader the
opportunity to run a schema through a filter, or even generate an entire schema on the fly.

Dynamic schemas are a very powerful construct. As we shall see, an important application for
them is internationalization.

Internationalization

An internationalized Mondrian application would have a schema for each language, where the
caption of each object appears in the local language. For example, the [Product] dimension

would have the caption "Product" in English and "Produit" in French.

It is unwise to translate the actual names of the schema objects, because then the MDX
statements would need to be changed also. All that you need to change is the caption. Every
schema object (schema, cube, dimension, level, measure) has a caption attribute, and user
interfaces such as JPivot display the caption rather than the real name. Additionally:

• A hierarchy can have an allMemberCaption attribute as display value of the "All"

member.
• For the schema we can set a display value of the "measures" dimension by the

measuresCaption attribute.

One way to create an internationalized application is to create a copy of the schema file for each
language, but these are difficult to maintain. A better way is to use the
LocalizingDynamicSchemaProcessor class to perform dynamic substitution on a single schema
file.

Localizing schema processor

First, write your schema using variables as values for caption , allMemberCaption and

measuresCaption attributes as follows:

<Schema measuresCaption="%{foodmart.measures.caption}">

 < Dimension name="Store"
caption="%{foodmart.dimension.store.caption}">
 < Hierarchy hasAll="true" allMemberName="All Stores"
allMemberCaption ="%{foodmart.dimension.store.allme mber.caption =All
Stores}" primaryKey="store_id">
 < Table name="store"/>
 < Level name="Store Country" column="store_country"

 - 40 -

uniqueMembers="true" caption=
"%{foodmart.dimension.store.country.caption}"/>
 < Level name="Store State" column="store_state"
uniqueMembers="true" caption=
"%{foodmart.dimension.store.state.caption}"/>
 < Level name="Store City" column="store_city"
uniqueMembers="false" caption=
"%{foodmart.dimension.store.city.caption}"/>
 < Level name="Store Name" column="store_name" uniqueMember s="true"
caption= "%{foodmart.dimension.store.name.caption}" >
 < Property name="Store Type" column="store_type" caption=
"%{foodmart.dimension.store. name.property_type.cap tion}"/>
 < Property name="Store Manager" column="store_manager" captio n=
"%{foodmart.dimension.store. name.property_manager. caption}"/>
 < Property name="Store Sqft" column="store_sqft" type="Numeri c"
caption= "%{foodmart.dimension.store.
name.property_storesqft.caption}"/>
 < Property name="Grocery Sqft" column="grocery_sqft"
type="Numeric"/>
 < Property name="Frozen Sqft" column="frozen_sqft"
type="Numeric"/>
 < Property name="Meat Sqft" column="meat_sqft" type="Numeric" />
 < Property name="Has coffee bar" column="coffee_bar"
type="Boolean"/>
 < Property name="Street address" column="store_street_address "
type="String"/>
 </ Level >
 </ Hierarchy >
 </ Dimension >

 < Cube name="Sales" caption="%{foodmart.cube.sales.captio n}">
 ...
 < DimensionUsage name="Store" source="Store" foreignKey="store_id"/ >
 ...
 < Measure name="Unit Sales" column="unit_sales"
caption="%{foodmart.cube.sales.measure.unitsales}">

As usual, the default caption for any cube, measure, dimension or level without a caption

attribute is the name of the element. A hierarchy's default caption is the caption of its dimension;
for example, the [Store] hierarchy has no caption defined, so it inherits the caption

attribute from its parent, the [Store] dimension.

Next, add the dynamic schema processor and locale to your connect string. For example,

Provider=mondrian; Locale=en_US; DynamicSchemaProcessor=
mondrian.i18n.LocalizingDynamicSchemaProcessor; Jdbc=
jdbc:odbc:MondrianFoodMart; Catalog= /WEB-INF/FoodM art.xml

Now, for each locale you wish to support, provide a resource file named
locale_ {locale}.properties . For example,

locale.properties: Default resources
foodmart.measures.caption=Measures
foodmart.dimension.store.country.caption=Store Coun try
foodmart.dimension.store.name.property_type.column= store_type

 - 41 -

foodmart.dimension.store.country.member.caption= st ore_country
foodmart.dimension.store.name.property_type.caption =Store Type
foodmart.dimension.store.name.caption =Store Name
foodmart.dimension.store.state.caption =Store State
foodmart.dimension.store.name.property_manager.capt ion =Store Manager
foodmart.dimension.store.name.property_storesqft.ca ption =Store Sq. Ft.
foodmart.dimension.store.allmember.caption =All Sto res
foodmart.dimension.store.caption =Store
foodmart.cube.sales.caption =Sales
foodmart.dimension.store.city.caption =Store City
foodmart.cube.sales.measure.unitsales =Unit Sales

and

locale_hu.properties: Resources for the 'hu' loca le.
foodmart.measures.caption=Hungarian Measures
foodmart.dimension.store.country.caption=Orsz\u00E1 g
foodmart.dimension.store.name.property_manager.capt ion
=\u00C1ruh\u00E1z vezet\u0151
foodmart.dimension.store.country.member.caption
=store_country_caption_hu
foodmart.dimension.store.name.property_type.caption =Tipusa
foodmart.dimension.store.name.caption =Megnevez\u00 E9s
foodmart.dimension.store.state.caption =\u00C1llam/ Megye
foodmart.dimension.store.name.property_type.column
=store_type_caption_hu
foodmart.dimension.store.name.property_storesqft.ca ption =M\u00E9ret
n.l\u00E1b
foodmart.dimension.store.allmember.caption =Minden \u00C1ruh\u00E1z
foodmart.dimension.store.caption =\u00C1ruh\u00E1z
foodmart.cube.sales.caption =Forgalom
foodmart.dimension.store.city.caption =V\u00E1ros
foodmart.cube.sales.measure.unitsales =Eladott db

Aggregate tables

Aggregate tables are a way to improve Mondrian's performance when the fact table contains a
huge number of rows: a million or more. An aggregate table is essentially a pre-computed
summary of the data in the fact table.

Let's look at a simple aggregate table.

<Cube name="Sales">
 < Table name="sales_fact_1997">
 < AggName name="agg_c_special_sales_fact_1997">
 < AggFactCount column="FACT_COUNT"/>
 < AggMeasure name="[Measures].[Store Cost]"
column="STORE_COST_SUM"/>
 < AggMeasure name="[Measures].[Store Sales]"
column="STORE_SALES_SUM"/>
 < AggLevel name="[Product].[Product Family]"
column="PRODUCT_FAMILY"/>
 < AggLevel name="[Time].[Quarter]" column="TIME_QUARTER"/>
 < AggLevel name="[Time].[Year]" column="TIME_YEAR"/>
 < AggLevel name="[Time].[Quarter]" column="TIME_QUARTER"/>

 - 42 -

 < AggLevel name="[Time].[Month]" column="TIME_MONTH"/>
 </ AggName>
 </ Table >

 <!-- Rest of the cube definition -->
</ Cube>

The <AggForeignKey > element, not shown here, allows you to reference a dimension table
directly, without including its columns in the aggregate table. It is described in the aggregate
tables guide.

In practice, a cube which is based upon a very large fact table may have several aggregate
tables. It is inconvenient to declare each aggregate table explicitly in the schema XML file, and
luckily there is a better way. In the following example, Mondrian locates aggregate tables by
pattern-matching.

<Cube name="Sales">
 < Table name="sales_fact_1997">
 < AggPattern pattern="agg_.*_sales_fact_1997"/>
 < AggExclude name="agg_c_14_sales_fact_1997"/>
 < AggExclude name="agg_lc_100_sales_fact_1997"/>
 </ Table >
</ Cube>

It tells Mondrian to treat all tables which match the pattern "agg_.*_sales_fact_1997" as

aggregate tables, except "agg_c_14_sales_fact_1997" and

"agg_lc_100_sales_fact_1997" . Mondrian uses rules to deduce the roles of the columns in
those tables, so it's important to adhere to strict naming conventions. The naming conventions
are described in the aggregate tables guide.

The performance guide has advice on choosing aggregate tables.

Access-control

OK, so now you've got all this great data, but you don't everyone to be able to read all of it. To
solve this, you can define an access-control profile, called a Role, as part of the schema, and set
this role when establishing a connection.

Defining a role

Roles are defined by <Role> elements, which occur as direct children of the <Schema> element,

after the last <Cube>. Here is an example of a role:

<Role name="California manager">
 < SchemaGrant access="none">
 < CubeGrant cube="Sales" access="all">
 < HierarchyGrant hierarchy="[Store]" access="custom"
topLevel="[Store].[Store Country]">
 < MemberGrant member="[Store].[USA].[CA]" access="all"/>
 < MemberGrant member="[Store].[USA].[CA].[Los Angeles]"
access="none"/>
 </ HierarchyGrant >

 - 43 -

 < HierarchyGrant hierarchy="[Customers]" access="custom"
topLevel="[Customers].[State Province]"
bottomLevel="[Customers].[City]">
 < MemberGrant member="[Customers].[USA].[CA]" access="all"/>
 < MemberGrant member="[Customers].[USA].[CA].[Los Angeles]"
access="none"/>
 </ HierarchyGrant >
 < HierarchyGrant hierarchy="[Gender]" access="none"/>
 </ CubeGrant >
 </ SchemaGrant >
</ Role >

A <SchemaGrant> defines the default access for objects in a schema. The access attribute can
be "all" or "none"; this access can be overridden for specific objects. In this case, because
access="none" , a user would only be able to browse the "Sales" cube, because it is explicitly
granted.

A <CubeGrant> defines the access to a particular cube. As for <SchemaGrant> , the access
attribute can be "all" or "none", and can be overridden for specific sub-objects in the cube.

A <HierarchyGrant> defines access to a hierarchy. The access attribute can be "all", meaning

all members are visible; "none", meaning the hierarchy's very existence is hidden from the user;
and "custom". With custom access, you can use the topLevel attribute to define the top level

which is visible (preventing users from seeing too much of the 'big picture', such as viewing
revenues rolled up to the Store Country level); or use the bottomLevel attribute to define

the bottom level which is visible (here, preventing users from invading looking at individual
customers' details); or control which sets of members the user can see, by defining nested
<MemberGrant> elements.

You can only define a <MemberGrant> element if its enclosing <HierarchyGrant> has

access="custom" . Member grants give (or remove) access to a given member, and all of its

children. Here are the rules:

1. Members inherit access from their parents. If you deny access to California, you
won't be able to see San Francisco.

2. Grants are order-dependent. If you grant access to USA, then deny access to
Oregon, then you won't be able to see Oregon, or Portland. But if you were to deny
access to Oregon, then grant access to USA, you can effectively see everything.

3. A member is visible if any of its children are visible. Suppose you deny access to
USA, then grant access to California. You will be able to see USA, and California, but
none of the other states. The totals against USA will still reflect all states, however.

4. Member grants don't override the hierarchy grant's top- and bottom-levels. If
you set topLevel="[Store].[Store State]" , and grant access to California, you

won't be able to see USA.

In the example, the user will have access to California, and all of the cities in California except
Los Angeles. They will be able to see USA (because its child, California, is visible), but no other
nations, and not All Stores (because it is above the top level, Store Country).

 - 44 -

Setting a connection's role

A role only has effect when it is associated with a connection. By default, connections have a role
which gives them access to every cube in that connection's schema.

Most databases associate roles (or 'groups') with users, and automatically assign them when
users log in. However, Mondrian doesn't have the notion of users, so you have to establish the
role in a different way. There are two ways of doing this:

1. In the connect string. If you specify the Role keyword in the connect string, the
connection will adopt that role. See class DriverManager for examples of connect string
syntax.

2. Programmatically. Once your application has established a connection, call the method
Connection.setRole(Role). You can create a Role programmatically (see class Role for
more details), or look one up using the method Schema.lookupRole(String).

XML elements
Element Description

<Schema> Collection of Cubes, Virtual cubes, Shared
dimensions, and Roles.

Logical elements

<Cube> A collection of dimensions and measures, all
centered on a fact table.

<VirtualCube > A cube defined by combining the dimensions
and measures of one or more cubes.

<Dimension >

<DimensionUsage > Usage of a shared dimension by a cube.

<Hierarchy > Hierarchy.

<Level > Level of a hierarchy.

<Property >
Member property. The definition is against a
hierarchy or level, but the property will be
available to all members.

<Measure >

<CalculatedMember > A member whose value is derived using a
formula, defined as part of a cube.

<NamedSet> A set whose value is derived using a formula,
defined as part of a cube.

Physical elements

<Table > Fact or dimension table.

<View >
Defines a 'table' using a SQL query, which can
have different variants for different underlying
databases.

<Join > Defines a 'table' by joining a set of queries.

 - 45 -

<InlineTable > Defines a table using an inline dataset.

<Closure > Maps a parent-child hierarchy onto a closure
table.

Aggregate Tables

<AggExclude > Exclude a candidate aggregate table by name
or pattern matching.

<AggName> Declares an aggregate table to be matched by
name.

<AggPattern > Declares a set of aggregate tables by regular
expression pattern.

<AggFactCount >
Specifies name of the column in the candidate
aggregate table which contains the number of
fact table rows.

<AggIgnoreColumn > Tells Mondrian to ignore a column in an
aggregate table.

<AggForeignKey > Maps foreign key in the fact table to a foreign
key column in the candidate aggregate table.

<AggMeasure > Maps a measure to a column in the candidate
aggregate table.

<AggLevel > Maps a level to a column in the candidate
aggregate table.

Access control

<Role > An access-control profile.

<SchemaGrant > A set of rights to a schema.

<CubeGrant > A set of rights to a cube.

<HierarchyGrant > A set of rights to a hierarchy and levels within
that hierarchy.

<MemberGrant > A set of rights to a member and its children.

Extensions

<UserDefinedFunction > Imports a user-defined function.

Miscellaneous

<Parameter > Part of the definition of a Hierarchy; passed to
a MemberReader, if present.

<CalculatedMemberProperty > Property of a calculated member.

<Formula >
Holds the formula text within a <NamedSet>

or <CalculatedMember> .

<ColumnDefs > Holder for <ColumnDef> elements.

<ColumnDef >
Definition of a column in an <InlineTable>

dataset.

<Rows> Holder for <Row> elements.

<Row> Row in an <InlineTable> dataset.

<Value > Value of a column in an <InlineTable> dataset.

 - 46 -

<MeasureExpression > SQL expression used to compute a measure, in
lieu of a column.

<SQL> The SQL expression for a particular database
dialect.

 - 47 -

MDX

Copyright (C) 2005-2006 Julian Hyde

MDX is a language for querying multidimensional databases, in the same way that SQL is used to
query relational databases. It was originally defined as part of the OLE DB for OLAP specification,
and a similar language, mdXML, is part of the XML for Analysis specification.

MDX is stands for 'multi-dimensional expressions'. It is the query language implemented by
Mondrian. Microsoft proposed MDX as a standard, and its adoption among application writers and
other OLAP providers is steadily increasing. Since you can read the specification online and there
are some great books on MDX available, I won't describe the full MDX language.

Mondrian extends MDX with parameters and modified builtin functions.

What is the syntax of MDX?

A basic MDX query looks like this:

SELECT {[Measures].[Unit Sales], [Measures].[Store Sales]} ON COLUMNS,
{[Product].members} ON ROWS
FROM [Sales]
WHERE [Time].[1997].[Q2]

It looks a little like SQL, but don't be deceived! The structure of an MDX query is quite different
from SQL.

Since MDX is a standard language, we don't cover its syntax here. (The Microsoft SQL Server site
has an MDX specification; there's also a good tutorial in Database Journal.) This specification
describes the differences between Mondrian's dialect and the standard dialect of MDX.

Mondrian-specific MDX

StrToSet and StrToTuple

The StrToSet() and StrToTuple() functions take an optional parameter not present in the
standard MDX versions of these functions, describing the hierarchy the result will belong to:

StrToSet(<String Expression>[, <Hierarchy>])
StrToTuple(<String Expression>[, <Hierarchy>])

Parsing

Parsing is case-sensitive.

 - 48 -

Parameters

Pseudo-functions Param() and ParamRef() allow you to create parameterized MDX statements. A
parameter is a named variable embedded in an MDX query. Every parameter has a default value,
but you can supply a different value when you run the query.

Parameters are declared and used by using a special function, Parameter :

Parameter(<name>, <type>, <defaultValue>[, <description>])

The arguments of Parameter are as follows:

• name is a string constant. It must be unique within the query.
• type is either NUMERIC, STRING, or the name of a hierarchy.
• defaultValue is an expression. The expression's type must be consistent with the type

parameter; if type was a hierarchy, the expression must be a member of that hierarchy.
• description is an optional string constant.

If you want to use a parameter more than once in a query, use the ParamRef function:

ParamRef(<name>)

The name argument must be the name of a parameter declared elsewhere in the query by calling
the Parameter function.

The following query shows the top 10 brands in California, but you could change the Count
parameter to show the top 5, or the Region parameter to show sales in Seattle:

SELECT {[Measures].[Unit Sales]} on columns,
 TopCount([Product].[Brand].members,
 Parameter("Count", NUMERIC, 10, "Number of products to show"),
 (Parameter("Region", [Store], [Store].[USA].[CA]),
 [Measures].[Unit Sales])) on rows
FROM Sales

You can list a query's parameters by calling Query.getParameters(), and change a parameter's
value by calling Query.setParameter(String name, String value).

Cast operator

The Cast operator converts scalar expressions to other types. The syntax is

Cast(<Expression> AS <Type>)

where <Type> is one of:

• BOOLEAN
• NUMERIC
• DECIMAL
• STRING

 - 49 -

For example,

Cast([Store].CurrentMember.[Store Sqft], INTEGER)

returns the value of the [Store Sqft] property as an integer value.

IN and NOT IN

IN and NOT IN are Mondrian-specific functions. For example:

SELECT {[Measures].[Unit Sales]} ON COLUMNS,
 FILTER([Product].[Product Family].MEMBERS,
 [Product].[Product Family].CurrentMember NOT IN
 {[Product].[All Products].firstChild,
 [Product].[All Products].lastChild}) ON ROWS
FROM [Sales]

MATCHES and NOT MATCHES

MATCHES and NOT MATCHES are Mondrian-specific functions which compare a string with a Java
regular expression. For example, the following query finds all employees whose name starts with
'sam' (case-insensitive):

SELECT {[Measures].[Org Salary]} ON COLUMNS,
 Filter({[Employees].MEMBERS},
 [Employees].CurrentMember.Name MATCHES '(?i)sam.*') ON ROWS
FROM [HR]

Comments

MDX statements can contain comments. There are 3 syntactic forms for comments:

// End-of-line comment

-- End-of-line comment

/* Multi-line
comment */

Comments can be nested, for example

/* Multi-line
comment /* Comment within a comment */
*/

Format Strings

Every member has a FORMAT_STRING property, which affects how its raw value is rendered into
text in the user interface. For example, the query

 - 50 -

WITH MEMBER [Measures].[Profit] AS '([Measures].[St ore Sales] -
[Measures].[Store Cost])',
FORMAT_STRING = "$#,###.00"
SELECT {[Measures].[Store Sales], [Measures].[Profi t]} ON COLUMNS,
{[Product].CurrentMember.Children} ON ROWS
FROM [Sales]

yields cells formatted in dollar and cent amounts.

Members defined in a schema file can also have format strings. Measures use the formatString
attribute:

<Measure name="Store Sales" column="store_sales" ag gregator="sum"
formatString="#,###.00"/>

and calculated members use the <CalculatedMemberProperty> sub-element:

<CalculatedMember name="Profit" dimension="Measures "
formula="[Measures].[Store Sales] - [Measures].[Sto re Cost]">
 <CalculatedMemberProperty name="FORMAT_STRING" va lue="$#,##0.00"/>
</CalculatedMember>

Format strings use Visual Basic formatting syntax; see class mondrian.olap.Format for more
details.

A measure's format string is usually a fixed string, but is really an expression, which is evaluated
in the same context as the cell. You can therefore change the formatting of a cell depending
upon the cell's value.

The format string can even contain 'style' attributes which are interpreted specially by JPivot. If
present, JPivot will render cells in color.

The following example combines a dynamic formula with style attributes. The result is that cells
are displayed with green background if they are less than $100,000, or a red background if they
are greater than $100,000:

WITH MEMBER [Measures].[Profit] AS
 '([Measures].[Store Sales] - [Measures].[Store C ost])',
 FORMAT_STRING = Iif([Measures].[Profit] < 100000, '|#|style=green',
'|#|style=red')
SELECT {[Measures].[Store Sales], [Measures].[Profi t]} ON COLUMNS,
 {[Product].CurrentMember.Children} ON ROWS
FROM [Sales]

 - 51 -

Configuration Guide
Copyright (C) 2006-2007 Julian Hyde and others

Properties that control execution

Mondrian has a properties file to allow you to configure how it executes. The mondrian.properties
file is loaded when the executing Mondrian JAR detects it needs properties, but can also be done
explicitly in your code. It looks in several places, in the following order:

1. In the directory where you started your JVM (Current working directory for JVM process,
java.exe on Win32, java on *nix).

2. If there isn't mondrian.properties under current working directory of JVM process, Class
MondrianProperties's classloader will try to locate mondrian.properties in all of its
classpaths. So you may put mondrian.properties under /WEB-INF/classes when you

pack Mondrian into a Java web application. The demonstration web applications have this
configuration.

These properties are stored as system properties, so they can be set during JVM startup via -
D<property>=<value> .

Property list

The following properties in the mondrian.properties file effect the operations of Mondrian.

Not all of the properties in this table are of interest to the end-user. For example, those in the
'Testing' are only applicable if are running Mondrian's suite of regression tests.

Property Type
Default

value
Description

Miscellaneous

mondrian.foodmart .jdbcURL string
"jdbc:odbc:
Mondrian
FoodMart"

Property containing the JDBC URL of the
FoodMart database. The default value is to
connect to an ODBC data source called
"MondrianFoodMart".

mondrian.query. limit int 40

Maximum number of simultaneous queries
the system will allow.

Oracle fails if you try to run more than the
'processes' parameter in init.ora, typically
150. The throughput of Oracle and other
databases will probably reduce long before
you get to their limit.

mondrian. jdbcDrivers string
See
Description

A list of JDBC drivers to load automatically.
Must be a comma-separated list of class
names, and the classes must be on the
class path.

 - 52 -

Default drivers are:

mondrian.jdbcDrivers,
sun.jdbc.odbc .JdbcOdbcDriver,
org.hsqldb.jdbcDriver,
oracle.jdbc.Oracle Driver,
com.mysql.jdbc .Driver

mondrian.result .limit int 0
If set to a value greater than zero, limits
the maximum size of a result set.

mondrian.rolap.
CachePool.costLimit int 10,000 Obsolete.

mondrian.rolap. evaluate.
MaxEvalDepth int 10

Maximum number of passes allowable while
evaluating an MDX expression. If evaluation
exceeds this depth (for example, while
evaluating a very complex calculated
member), Mondrian will throw an error.

mondrian.rolap.
LargeDimension Threshold int 100

Determines when a dimension is considered
"large". If a dimension has more than this
number of members, Mondrian uses a
smart member reader.

mondrian.rolap.
SparseSegment
ValueThreshold

int 1,000

The values of the mondrian.rolap.
SparseSegment ValueThreshold

(countThreshold) and mondrian.rolap.
SparseSegment DensityThreshold
(densityThreshold) properties determine
whether to choose a sparse or dense
representation when storing collections of
cell values in memory.

When storing collections of cell values in
memory, Mondrian has to choose between
a sparse and a dense representation, based
upon the possible and actual number of
values. The density is defined by the
formula

density = actual / possible

Mondrian uses a sparse representation if

possible - (countThreshold *
actual) > densityThreshold

For example, at the default values
(countThreshold = 1000 and
densityThreshold = 0.5), Mondrian use a
dense representation for

• (1000 possible, 0 actual), or
• (2000 possible, 500 actual), or

 - 53 -

• (3000 possible, 1000 actual).

Any fewer actual values, or any more
possible values, and Mondrian will use a
sparse representation.

mondrian.rolap.
SparseSegment
DensityThreshold

double 0.5
See mondrian.rolap. SparseSegment
ValueThreshold .

mondrian.olap.
triggers.enable boolean true

Whether to notify the Mondrian system
when a property value changes.

This allows objects dependent on Mondrian
properties to react (that is, reload), when a
given property changes via, say,

 MondrianProperties .instance()
.populate(null) ;

or

MondrianProperties .instance()
.QueryLimit.set(50);

mondrian.olap.
case.sensitive boolean false

Controls whether the MDX parser resolves
uses case-sensitive matching when looking
up identifiers.

mondrian.rolap.
localePropFile

string null Name of locale property file.

Used for the
LocalizingDynamicSchemaProcessor; see
Internationalization for more details.

mondrian.rolap.queryTimeou
t int 0

If set to a value greater than zero, limits
the number of seconds a query executes
before it is aborted.

mondrian.rolap.nonempty boolean false
If true, each query axis implicit has the
NON EMPTY option set (and in fact there is
no way to display empty cells).

mondrian.rolap.ignoreInval
idMembers boolean false

If set to true, during schema load, invalid
members are ignored and will be treated as
a null member if they are later referenced
in a query.

Tracing

mondrian.trace. level int -

The amount of tracing displayed.

If trace level is above 0, SQL tracing will be
enabled and logged as per the out.file
below. This is separate from Log4j logging.

mondrian.debug. out.file string System.out
The name of the file to which tracing is to
be written.

 - 54 -

mondrian.rolap.
RolapResult.
printCacheables

boolean false Obsolete.

Testing

mondrian.test. Name string null

Property which determines which tests are
run. This is a Java regular expression. If
this property is specified, only tests whose
names match the pattern in its entirety will
be run.

mondrian.test. Class string -

Property which determines which test class
to run. This is the name of the class which
either implements interface junit
.framework.Test or has a method
public static
junit.framework.Test suite() .

mondrian.test
.connectString string -

Property containing the connect string
which regresssion tests should use to
connect to the database.

See the connect string specification for
more details.

mondrian.test
.QueryFilePattern string - (not documented)

mondrian.test
.QueryFileDirectory string - (not documented)

mondrian.test .Iterations int 1 (not documented)

mondrian.test .VUsers int 1 (not documented)

mondrian.test .TimeLimit int 0
The time limit for the test run in seconds. If
the test is running after that time, it is
terminated.

mondrian.test .Warmup boolean false Whether this is a "warmup test".

mondrian. catalogURL string -
The URL of the catalog to be used by
CmdRunner and XML/A Test.

mondrian.test
.ExpDependencies int 0

Whether to test operators' dependencies,
and how much time to spend doing it.

If this property is positive, Mondrian's test
framework allocates an expression
evaluator which evaluates each expression
several times, and makes sure that the
results of the expression are independent
of dimensions which the expression claims
to be independent of.

mondrian.test .random.seed int 1234

Seed for random number generator used
by some of the tests.

Any value besides 0 or -1 gives
deterministic behavior. The default value is
1234: most users should use this. Setting

 - 55 -

the seed to a different value can increase
coverage, and therefore may uncover new
bugs.

If you set the value to 0, the system will
generate its own pseudo-random seed.

If you set the value to -1, Mondrian uses
the next seed from an internal random-
number generator. This is a little more
deterministic than setting the value to 0.

public final IntegerProperty TestSeed =
new IntegerProperty(
this, "", 1234);

mondrian.test. jdbcURL string -
Property containing the JDBC URL of a test
database. It does not default.

mondrian.test .jdbcUser string -
Property containing the JDBC user of a test
database. The default value is null, to cope
with DBMSs that don't need this.

mondrian.test
.jdbcPassword string -

Property containing the JDBC password of a
test database. The default value is null, to
cope with DBMSs that don't need this.

Aggregate tables

mondrian.rolap
.aggregates.Use boolean false

Whether to use aggregate tables.

If true, then Mondrian uses aggregate
tables. This property is queried prior to
each aggregate query so that changing the
value of this property dynamically (not just
at startup) is meaningful.

Aggregates can be read from the database
using the mondrian.rolap.
aggregates.Read property but will not
be used unless this property is set to true.

mondrian.rolap
.aggregates.Read boolean false

Whether to read aggregate tables.

If set to true, then Mondrian scans the
database for aggregate tables. Unless
mondrian.rolap. aggregates.Use is

set to true, the aggregates found will not
be used.

mondrian.rolap.
aggregates. ChooseByVolume boolean false

Whether to choose an aggregate tables
based volume or row count.

If true, Mondrian uses the aggregate table
with the smallest volume (number of rows
multiplied by number of columns); if false,

 - 56 -

Mondrian uses the aggregate table with the
fewest rows.

mondrian.rolap.
aggregates.rules string

See
Description

Name of the file which defines the rules for
recognizing an aggregate table.

Can be either a resource in the Mondrian
jar or a URL. See aggregate table rules for
details.

Normally, this property is not set by a user.

Default: "/DefaultRules.xml"
(which is in the mondrian.rolap
.aggmatcher package in

mondrian.jar)

mondrian.rolap.
aggregates.rule.tag string default

The AggRule element's tag value.

Normally, this property is not set by a user.

mondrian.rolap.
aggregates. generateSql boolean false

Whether to print the SQL code generated
for aggregate tables.

If set, then as each aggregate request is
processed, both the lost and collapsed
dimension create and insert sql code is
printed. This is for use in the CmdRunner
allowing one to create aggregate table
generation sql.

Caching

mondrian.rolap.
star.disable Caching boolean false

Whether to clear a RolapStar's data cache
after each query.

If true, RolapStar does not cache aggregate
data from one query to the next: the cache
is cleared after each query.

mondrian.expCache .enable boolean true

Controls whether to use a cache for the
results of frequently evaluated expressions.

With the cache disabled, an expression like:

Rank([Product]. CurrentMember,
 Order([Product] .MEMBERS,
[Measures].[Unit Sales]))

would perform many redundant sorts.

mondrian.rolap.
RolapResult. flushAfter
EachQuery

boolean false Obsolete.

SQL generation

 - 57 -

mondrian.native
.crossjoin.enable

boolean true If enabled, some NON EMPTY CrossJoin
MDX statements will be computed in the
database and not within Mondrian/Java

mondrian.native
.topcount.enable

boolean false If enabled, some TopCount MDX
statements will be computed in the
database and not within Mondrian/Java

mondrian.native
.filter.enable

boolean false If enabled, some Filter() MDX

statements will be computed in the
database and not within Mondrian/Java

mondrian.native
.nonempty.enable

boolean true If enabled, some NON EMPTY MDX set
operations like member.children ,

level.members and

member.descendants will be computed
in the database and not within
Mondrian/Java

mondrian.rolap.
generate.formatted .sql boolean false

Whether to pretty-print SQL generated
statements.

If true, Mondrian generates SQL strings are
generated in the log or output in pretty-
print mode, formatted for ease of reading.

mondrian.rolap.
maxConstraints

int 1,000 Max number of constraints in a single `IN'
SQL clause.

This value may be variant among database
products and their runtime settings. Oracle,
for example, gives the error "ORA-01795:
maximum number of expressions in a list is
1000".

Recommended values:

• Oracle: 1,000
• DB2: 2,500
• Other: 10,000

XML/A

mondrian.xmla.
drillthrough
TotalCount.enable

boolean true

If enabled, first row in the result of an
XML/A drill-through request will be filled
with the total count of rows in underlying
database.

mondrian.xmla.
drillthrough MaxRows int 1,000

Limit on the number of rows returned by
XML/A drill through request.

 - 58 -

Connect strings

Connect string syntax

Mondrian connect strings are a connection of property/value pairs, of the form
'property=value;property=value;...'.

Values can be enclosed in single-quotes, which allows them to contain spaces and punctuation.
See the the OLE DB connect string syntax specification.

The supported properties are described below.

Connect string properties

Name
Requir
ed?

Description

Provider Yes Must have the value "Mondrian".

Jdbc
The URL of the JDBC database where the data is stored. You must
specify either DataSource or Jdbc .

DataSource

Exactly
one The name of a data source class. The class must implement the

javax.sql.DataSource interface. You must specify either
DataSource or Jdbc .

JdbcDrivers Yes

Comma-separated list of JDBC driver classes, for example,

JdbcDrivers=sun.jdbc.odbc.JdbcOdbcDriver,oracle.j
dbc.OracleDriver

JdbcUser No
The name of the user to log on to the JDBC database. (If your
JDBC driver allows you to specify the user name in the JDBC URL,
you don't need to set this property.)

JdbcPassword No
The name of the password to log on to the JDBC database. (If
your JDBC driver allows you to specify the password in the JDBC
URL, you don't need to set this property.)

Catalog

The URL of the catalog, an XML file which describes the schema:
cubes, hierarchies, and so forth. For example,

Catalog=file:demo/FoodMart.xml

Catalogs are described in the Schema Guide. See also
CatalogContent .

CatalogContent

Exactly
one An XML string representing the schema: cubes, hierarchies, and so

forth. For example,

CatalogContent=<Schema name="MySchema"><Cube
name="Cube1"> ... </Schema>

Catalogs are described in the Schema Guide. See also Catalog .

 - 59 -

CatalogName No
Not used. If, in future, Mondrian supports multiple catalogs, this
property will specify which catalog to use. See also Catalog .

PoolNeeded No

Tells Mondrian whether to add a layer of connection pooling.

If the value "true" is specified, or no value is specified, Mondrian
assumes that:

• connections created via the Jdbc property are not pooled,

and therefore need to be pooled;
• connections created via the DataSource are already

pooled.

If the value "false" is specified, Mondrian does not apply
connection-pooling to any connection.

Role No
The name of the role to adopt for access-control purposes. If not
specified, the connection uses a role which has access to every
object in the schema.

DynamicSchemaPro
cessor No

The name of a class which is called at runtime in order to modify
the schema content. The class must implement the
mondrian.rolap.DynamicSchemaProcessor interface. For example,

DynamicSchemaProcessor =
mondrian.i18n.LocalizingDynamicSchemaProcessor

uses the builtin schema processor class
mondrian.i18n.LocalizingDynamicSchemaProcessor to replace
variables in the schema file, according to resource files and the
current locale (see the Locale property).

Locale No

The requested Locale for the current session. The locale
determines the formatting of numbers and date/time values, and
Mondrian's error messages.

Example values are "en" (English), "en_US" (United States
English), "hu" (Hungarian). If Locale is not specified, then the
name of system's default will be used, as per
java.util.Locale#getDefault().

Connect string properties are also documented in the RolapConnectionProperties class.

 - 60 -

Optimizing Mondrian Performance
Copyright (C) 2005-2006 Julian Hyde, Sherman Wood and others

Introduction

As with any data warehouse project, dealing with volumes is always the make or break issue.
Mondrian has its own issues, based on its architecture and goals of being cross platform. Here
are some experiences and comments.

From the Mondrian developer's mailing list in February, 2005 - an example of unoptimized
performance:

When Mondrian initializes and starts to process the first queries, it makes SQL calls to get
member lists and determine cardinality, and then to load segments into the cache. When
Mondrian is closed and restarted, it has to do that work again. This can be a significant chunk of
time depending on the cube size. For example in one test an 8GB cube (55M row fact table) took
15 minutes (mostly doing a group by) before it returned results from its first query, and absent
any caching on the database server would take another 15 minutes if you closed it and reopened
the application. Now, this cube was just one month of data; imagine the time if there was 5
years worth.

Since this time, Mondrian has been extended to use aggregate tables and materialized views,
which have a lot of performance benefits that address the above issue.

From Julian:

I'm surprised that people can run 10m+ row fact tables on Mondrian at all, without using
aggregate tables or materialized views.

From Sherman:

Our largest site has a cube with currently ~6M facts on a single low end Linux box running our
application with Mondrian and Postgres (not an ideal configuration), without aggregate tables,
and gets sub second response times for the user interface (JPivot). This was achieved by tuning
the database to support the queries being executed, modifying the OS configuration to best
support Postgres execution (thanks Josh!) and adding as much RAM as possible.

A generalized tuning process for Mondrian

The process for addressing performance of Mondrian is a combination of design, hardware,
database and other configuration tuning. For really large cubes, the performance issues are
driven more by the hardware, operating system and database tuning than anything Mondrian can
do.

• Have a reasonable physical design for requirements, such as a data warehouse and
specific data marts

• Architect the application effectively
o Separate the environment where Mondrian is executing from the DBMS

 - 61 -

o If possible: separate UI processing from the environment where Mondrian is
caching

• Have adequate hardware for the DBMS
• Tune the operating system for the DBMS
• Add materialized views or aggregate tables to support specific MDX queries (see

Aggregate Tables and AggGen below)
• Tune the DBMS for the specific SQL queries being executed: that is, indexes on both the

dimensions and fact table
• Tune the Mondrian cache: the larger the better

Recommendations for database tuning

As part of database tuning process, enable SQL tracing and tail the log file. Run some
representative MDX queries and watch which SQL statements take a long time. Tune the
database to fix those statements and rerun.

• Indexes on primary and foreign keys
• Consider enabling foreign keys
• Ensure that columns are marked NOT NULL where possible
• If a table has a compound primary key, experiment with indexing subsets of the columns

with different leading edges. For example, for columns (a, b, c) create a unique index on
(a, b, c) and non-unique indexes on (b, c) and (c, a). Oracle can use such indexes to
speed up counts.

• On Oracle, consider using bitmap indexes for low-cardinality columns. (Julian
implemented the Oracle's bitmap index feature, and he's rather proud of them!)

• On Oracle, Postgres and other DBMSs, analyze tables, otherwise the cost-based
optimizers will not be used

Mondrian currently uses 'count(distinct ...)' queries to determine the cardinality of dimensions
and levels as it starts, and for your measures that are counts, that is, aggregator="count" .

Indexes might speed up those queries -- although performance is likely to vary between
databases, because optimizing count-distinct queries is a tricky problem.

Aggregate Tables, Materialized Views and Mondrian

The best way to increase the performance of Mondrian is to build a set of aggregate (summary)
tables that coexist with the base fact table. These aggregate tables contain pre-aggregated
measures build from the fact table.

Some databases, particularly Oracle, can automatically create these aggregations through
materialized views, which are tables created and synchronized from views. Otherwise, you will
have to maintain the aggregation tables through your data warehouse load processes, usually by
clearing them and rerunning aggregating INSERTs.

Aggregate tables are introduced in the Schema Guide.

Choosing aggregate tables

It isn't easy to choose the right aggregate tables. For one thing, there are so many to choose
from: even a modest cube with six dimensions each with three levels has 64 = 1296 possible

 - 62 -

aggregate tables! And aggregate tables interfere with each other. If you add a new aggregate
table, Mondrian may use an existing aggregate table less frequently.

Missing aggregate tables may not even be the problem. Choosing aggregate tables is part of a
wider performance tuning process, where finding the problem is more than half of the battle. The
real cause may be a missing index on your fact table, your cache isn't large enough, or (if you're
running Oracle) the fact that you forgot to compute statistics. (See recommendations, above.)

Performance tuning is an iterative process. The steps are something like this:

1. Choose a few queries which are typical for those the end-users will be executing.
2. Run your set of sample queries, and note how long they take. Now the cache has been

primed, run the queries again: has performance improved?
3. Is the performance good enough? If it is, stop tuning now! If your data set isn't very

large, you probably don't need any aggregate tables.
4. Decide which aggregate tables to create. If you turn on SQL tracing, looking at the

GROUP BY clauses of the long-running SQL statements will be a big clue here.
5. Register the aggregate tables in your catalog, create the tables in the database, populate

the tables, and add indexes.
6. Restart Mondrian, to flush the cache and re-read the schema, then go to step 2 to see if

things have improved.

AggGen

AggGen is a tool that generates SQL to support the creation and maintenance of aggregate
tables, and would give a template for the creation of materialized views for databases that
support those. Given an MDX query, the generated create/insert SQL is optimal for the given
query. The generated SQL covers both the "lost" and "collapsed" dimensions. For usage, see the
documentation for CmdRunner.

 - 63 -

Aggregate Tables
Copyright (C) 2005-2006 Julian Hyde, Richard Emberson and others

Introduction

Unlike many OLAP servers, Mondrian does not store data on disk: it just works on the data in the
RDBMS, and once it has read a piece of data once, it stores that data in its cache. This greatly
simplifies the process of installing Mondrian, but it puts limits on Mondrian's performance when
Mondrian is applied to a huge dataset.

Consider what happens when the CEO runs her Sales Report first thing on a Monday morning.
This report contains a single number: the total sales of all products, in all regions, this year. In
order to get this number, Mondrian generates a query something like this:

SELECT sum(store_sales)
FROM sales_fact,
 time
WHERE sales_fact.time_id = time.time_id
AND time.year = 2005

and sends it to the DBMS. The DBMS takes several minutes to execute it: which is
understandable because the DBMS has to read all of this year's records in the fact table (a few
million sales, say) and aggregate them into a single total. Clearly, what is needed in this case,
and in others like it, is a pre-computed summary of the data: an aggregate table.

An aggregate table coexists with the base fact table, and contains pre-aggregated measures
build from the fact table. It is registered in Mondrian's schema, so that Mondrian can choose to
use whether to use the aggregate table rather than the fact table, if it is applicable for a
particular query.

Designing aggregate tables is a fine art. There is extensive research, both empirical and
theoretical, available on the web concerning different ways to structure aggregate tables and we
will not attempt to duplicate any of it here.

 - 64 -

What are aggregate tables?

To explain what aggregate tables are, let's consider a simple star schema.

The star schema has a single fact table Sales , two measure columns (units and dollars)

and four dimension tables (Product , Mfr , Customer , Time , and Customer).

On top of this star schema, we create the following multidimensional model:

• Cube [Sales] has two measures [Unit sales] and [Dollar sales]

• Dimension [Product] has levels [All Products] , [Manufacturer] , [Brand] ,
[Prodid]

• Dimension [Time] has levels [All Time] , [Year] , [Quarter] , [Month] , [Day]

• Dimension [Customer] has levels [All Customers] , [State] , [City] , [Custid]

• Dimension [Payment Method] has levels [All Payment Methods] , [Payment
Method]

Note that the [Product] dimension is a 'snowflake dimension' (that is, it is spread across two

tables Product and Mfr) and the [Payment Method] dimension is contained within the

payment column in the fact table.

 - 65 -

A simple aggregate table

Now let's create an aggregate table, Agg_1 :

See how the original star schema columns have been combined into the table:

• The Time dimension has been "collapsed" into the aggregate table, omitting the month

and day columns.

• The two tables of the Product dimension has been "collapsed" into the aggregate table.

• The Customer dimension has been "lost".
• For each measure column in the fact table (units , dollars), there are one or more

measure columns in the aggregate table (sum units , min units , max units , sum
dollars).

• There is also a measure column, row count , representing the "count" measure.

Agg_1 would be declared like this:

<Cube name="Sales">
 < Table name="sales">
 < AggName name="agg_1">
 < AggFactCount column="row count"/>
 < AggMeasure name="[Measures].[Unit Sales]" column="sum units"/ >
 < AggMeasure name="[Measures].[Min Units]" column="min units"/>
 < AggMeasure name="[Measures].[Max Units]" column="max units"/>
 < AggMeasure name="[Measures].[Dollar Sales]" column="sum
dollars"/>
 < AggLevel name="[Time].[Year]" column="year"/>
 < AggLevel name="[Time].[Quarter]" column="quarter"/>
 < AggLevel name="[Product].[Mfrid]" column="mfrid"/>
 < AggLevel name="[Product].[Brand]" column="brand"/>
 < AggLevel name="[Product].[Prodid]" column="prodid"/>
 </ AggName>
 </ Table >

 <!-- Rest of the cube definition -->
</ Cube>

 - 66 -

Another aggregate table

Another aggregate table, Agg_2 :

and the corresponding XML:

<Cube name="Sales">
 < Table name="sales">
 < AggName name="agg_1" ... />
 < AggName name="agg_2">
 < AggFactCount column="row count"/>
 < AggForeignKey factColumn="prodid" aggColumn="prodid"/>
 < AggMeasure name="[Measures].[Unit Sales]" column="sum units"/ >
 < AggMeasure name="[Measures].[Min Units]" column="min units"/>
 < AggMeasure name="[Measures].[Max Units]" column="max units"/>
 < AggMeasure name="[Measures].[Dollar Sales]" column="sum
dollars"/>
 < AggLevel name="[Time].[Year]" column="year"/>
 < AggLevel name="[Time].[Quarter]" column="quarter"/>
 < AggLevel name="[Time].[Month]" column="month"/>
 < AggLevel name="[Payment Method].[Payment Method]"
column="payment"/>
 < AggLevel name="[Customer].[State]" column="state"/>
 </ AggName>
 </ Table >

 < Dimension name="Product">
 < Hierarchy hasAll="true" primaryKey="prodid"
primaryKeyTable="Product">
 < Join leftKey="mfrid" rightKey="mfrid">
 < Table name="Product"/>
 < Table name="Mfr"/>
 </ Join >
 < Level name="Manufacturer" table="Mfr" column="mfrid"/>
 < Level name="Brand" table="Product" column="brand"/>
 < Level name="Name" table="Product" column="prodid"/>
 </ Hierarchy >
 </ Dimension >

 <!-- Rest of the cube definition -->
</ Cube>

 - 67 -

Several dimensions have been collapsed: [Time] at the [Quarter] level; [Customer] at the

[State] level; and [Payment Method] at the [Payment Method] level. But the

[Product] dimension has been retained in its original snowflake form.

The <AggForeignKey > element is used to declare that the column prodid links to the

dimension table, but all other columns remain in the Product and Mfr dimension tables.

Defining aggregate tables

A fact table can have zero or more aggregate tables. Every aggregate table is associated with
just one fact table. It aggregates the fact table measures over one or more of the dimensions. As
an example, if a particular column in the fact table represents the number of sales of some
product on a given day by a given store, then an aggregate table might be created that sums the
information so that applies at a month level rather than by day. Such an aggregate might
reasonably be 1/30th the size of the fact table (assuming comparable sales for every day of a
month). Now, if one were to execute a MDX query that needed sales information at a month (or
quarter or year) level, running the query against the aggregate table is faster but yields the same
answer as if it were run against the base fact table.

Further, one might create an aggregate that not only aggregates at the month level but also,
rather than at the individual store level, aggregates at the state level. If there were, say, 20
stores per state, then this aggregate table would be 1/600th the size of the original fact table.
MDX queries interested only at the month or above and state or above levels would use this
table.

When a MDX query runs, what aggregate should be used? This comes down to what measures
are needed and with which dimension levels. The base fact table always has the correct
measures and dimension levels. But, it might also be true that there is one or more aggregate
tables that also have the measures and levels. Of these, the aggregate table with the lowest cost
to read, the smallest number of rows, should be the table used to fulfill the query.

Mondrian supports two aggregation techniques which are called "lost" dimension and "collapsed"
dimension. For the creation of any given aggregate table these can be applied independently to
any number of different dimensions.

A "lost" dimension is one which is completely missing from the aggregate table. The measures
that appear in the table have been aggregated across all values of the lost dimension. As an
example, in a fact table with dimensions of time, location, and product and measure sales, for an
aggregate table that did not have the location dimension that dimension would be "lost". Here,
the sales measure would be the aggregation over all locations. An aggregate table where all of
the dimensions are lost is possible - it would have a single row with the measure aggregated over
everything - sales for all time, all locations and all products.

fact table
 time_id
 product_id
 location_id
 measure

lost (time_id) dimension table
 product_id
 location_id

 - 68 -

 measure (aggregated over time)
 fact_count

fully lost dimension table
 measure (aggregated over everything)
 fact_count

Note the "fact_count" column in the aggregate table. This additional column is a general feature
of aggregate tables. It is a count of how many fact table columns were aggregated into the one
aggregate table row. As an example, if for a particular choice of product_id and location_id, the
time_id occurred 5 times in the fact table, then in the aggregate table the fact_count column
would contain 5 for that product_id/location_id pair (a given product was sold at a given location
at 5 different times).

The second supported aggregation technique provides a finer level of control, the "collapsed"
dimension technique. Recall that the dimension key in the fact table refers (more or less) to the
lowest level in the dimension hierarchy. For a collapsed dimension, the dimension key in the
aggregate table is replaced with a set of dimension levels; the dimension key column is replaced
with a set of columns; a fully denormalized summary table for that dimension. As an example, if
the time dimension with base fact table foreign key time_id had the levels: day, month, quarter
and year, and in an aggregate it was collapsed to the month level, then the aggregate table
would not have a time_id column but rather columns for month, quarter and year. The SQL
generated for a MDX query for which this aggregate table can be used, would no longer refer to
the time dimension's table but rather all time related information would be gotten from the
aggregate table.

time dimension table
 time_id
 day
 month
 quarter
 year

fact table
 time_id
 measure

collapsed dimension table
 month
 quarter
 year
 measure (aggregated to month level)
 fact_count

In the literature, there are other ways of creating aggregate tables but they are not supported by
Mondrian at this time.

Building aggregate tables

Aggregate tables must be built. Generally, they not real-time; they are rebuilt, for example, every
night for use the following day by the analysts. Considering the lost and collapsed dimension
technique for aggregate table definition, one can estimate that for a dimension with N levels,
there are N+1 possible aggregate tables (N collapsed and 1 lost). Also, dimensions (with different

 - 69 -

dimension tables) can be aggregated independently. For the FoodMart Sales cube there are 1400
different possible aggregate tables.

Clearly, one does not want to create all possible aggregate tables. Which ones to create depends
upon two considerations. The first consideration is application dependent: the nature of the MDX
queries that will be executed. If many of the queries deal with per month and per state
questions, then an aggregate at those levels might be created. The second consideration is
application independent: per dimension aggregating from the lowest level to the next lowest
generally gives greater bang for the buck than aggregating from the N to the N+1 (N>1) level.
This is because 1) a first level aggregation can be used for all queries at that level and above and
2) dimension fanout tends to increase for the lower levels. Of course, your mileage may vary.

In a sense, picking which aggregate tables to build is analogous to picking which indexes to build
on a table; it is application dependent and experience helps.

The hardest part about the actually creation and population of aggregate tables is figuring out
how to create the first couple; what the SQL looks like. After that they are pretty much all the
same.

Four examples will be given. They all concern building aggregate tables for the sales_fact_1997
fact table. As a reminder, the sales_fact_1997 fact table looks like:

sales_fact_1997
 product_id
 time_id
 customer_id
 promotion_id
 store_id
 store_sales
 store_cost
 unit_sales

The first example is a lost time dimension aggregate table, the time_id foreign key is missing.

CREATE TABLE agg_l_05_sales_fact_1997 (
 product_id INTEGER NOT NULL,
 customer_id INTEGER NOT NULL,
 promotion_id INTEGER NOT NULL,
 store_id INTEGER NOT NULL,
 store_sales DECIMAL(10,4) NOT NULL,
 store_cost DECIMAL(10,4) NOT NULL,
 unit_sales DECIMAL(10,4) NOT NULL,
 fact_count INTEGER NOT NULL);

CREATE INDEX i_sls_97_cust_id ON agg_l_05_sales_fac t_1997
(customer_id);
CREATE INDEX i_sls_97_prod_id ON agg_l_05_sales_fac t_1997 (product_id);
CREATE INDEX i_sls_97_promo_id ON agg_l_05_sales_fa ct_1997
(promotion_id);
CREATE INDEX i_sls_97_store_id ON agg_l_05_sales_fa ct_1997 (store_id);

INSERT INTO agg_l_05_sales_fact_1997 (
 product_id,
 customer_id,

 - 70 -

 promotion_id,
 store_id,
 store_sales,
 store_cost,
 unit_sales,
 fact_count)
SELECT
 product_id,
 customer_id,
 promotion_id,
 store_id,
 SUM(store_sales) AS store_sales,
 SUM(store_cost) AS store_cost,
 SUM(unit_sales) AS unit_sales,
 COUNT(*) AS fact_count
FROM
 sales_fact_1997
GROUP BY
 product_id,
 customer_id,
 promotion_id,
 store_id;

A couple of things to note here.

The above is in MySQL's dialect of SQL, and may not work for your database - but I hope the
general idea is clear. The aggregate table "looks like" the base fact table except the time_id
column is missing and there is a new fact_count column. The insert statement populates the
aggregate table from the base fact table summing the measure columns and counting to
populate the fact_count column. This done while grouping by the remaining foreign keys to the
remaining dimension tables.

Next, some databases recognize star joins - Oracle for instance. For such database one should
not create indexes, not on the fact table and not on the aggregate tables. On the other hand,
databases that do not recognize star joins will require indexes on both the fact table and the
aggregate tables.

For our purposes here, the exact name of the aggregate table is not important; the "agg_l_05_"
preceding the base fact table's name sales_fact_1997. First, the aggregate table name must be
different from the base fact table name. Next, the aggregate table name ought to be related to
the base fact table name both for human eyeballing of what aggregate is associated with which
fact table, but also, as described below, Mondrian employs mechanism to automagically
recognize which tables are aggregates of others.

The following example is a collapsed dimension aggregate table where the time dimension has
been rolled up to the month level.

CREATE TABLE agg_c_14_sales_fact_1997 (
 product_id INTEGER NOT NULL,
 customer_id INTEGER NOT NULL,
 promotion_id INTEGER NOT NULL,
 store_id INTEGER NOT NULL,
 month_of_year SMALLINT(6) NOT NULL,
 quarter VARCHAR(30) NOT NULL,

 - 71 -

 the_year SMALLINT(6) NOT NULL,
 store_sales DECIMAL(10,4) NOT NULL,
 store_cost DECIMAL(10,4) NOT NULL,
 unit_sales DECIMAL(10,4) NOT NULL,
 fact_count INTEGER NOT NULL);

CREATE INDEX i_sls_97_cust_id ON agg_c_14_sales_fac t_1997
(customer_id);
CREATE INDEX i_sls_97_prod_id ON agg_c_14_sales_fac t_1997 (product_id);
CREATE INDEX i_sls_97_promo_id ON agg_c_14_sales_fa ct_1997
(promotion_id);
CREATE INDEX i_sls_97_store_id ON agg_c_14_sales_fa ct_1997 (store_id);

INSERT INTO agg_c_14_sales_fact_1997 (
 product_id,
 customer_id,
 promotion_id,
 store_id,
 month_of_year,
 quarter,
 the_year,
 store_sales,
 store_cost,
 unit_sales,
 fact_count)
SELECT
 BASE.product_id,
 BASE.customer_id,
 BASE.promotion_id,
 BASE.store_id,
 DIM.month_of_year,
 DIM.quarter,
 DIM.the_year,
 SUM(BASE.store_sales) AS store_sales,
 SUM(BASE.store_cost) AS store_cost,
 SUM(BASE.unit_sales) AS unit_sales,
 COUNT(*) AS fact_count
FROM
 sales_fact_1997 AS BASE, time_by_day AS DIM
WHERE
 BASE.time_id = DIM.time_id
GROUP BY
 BASE.product_id,
 BASE.customer_id,
 BASE.promotion_id,
 BASE.store_id,
 DIM.month_of_year,
 DIM.quarter,
 DIM.the_year;

In this case, one can see that the time_id foreign key in the base fact table has been replaced
with the columns: month_of_year, quarter, and the_year in the aggregate table. There is, as
always, the fact_count column. The measures are inserted as sums. And, the group by clause is
over the remaining foreign keys as well as the imported time dimension levels.

 - 72 -

When creating a collapsed dimension aggregate one might consider creating indexes for the
columns imported from the dimension that was collapsed.

Below is another aggregate table. This one has two lost dimensions (store_id and

promotion_id) as well as collapsed dimension on time to the quarter level. This shows how

aggregate techniques can be mixed.

CREATE TABLE agg_lc_100_sales_fact_1997 (
 product_id INTEGER NOT NULL,
 customer_id INTEGER NOT NULL,
 quarter VARCHAR(30) NOT NULL,
 the_year SMALLINT(6) NOT NULL,
 store_sales DECIMAL(10,4) NOT NULL,
 store_cost DECIMAL(10,4) NOT NULL,
 unit_sales DECIMAL(10,4) NOT NULL,
 fact_count INTEGER NOT NULL);

CREATE INDEX i_sls_97_cust_id ON agg_lc_100_sales_f act_1997
(customer_id);
CREATE INDEX i_sls_97_prod_id ON agg_lc_100_sales_f act_1997
(product_id);

INSERT INTO agg_lc_100_sales_fact_1997 (
 product_id,
 customer_id,
 quarter,
 the_year,
 store_sales,
 store_cost,
 unit_sales,
 fact_count)
SELECT
 BASE.product_id,
 BASE.customer_id,
 DIM.quarter,
 DIM.the_year,
 SUM(BASE.store_sales) AS store_sales,
 SUM(BASE.store_cost) AS store_cost,
 SUM(BASE.unit_sales) AS unit_sales,
 COUNT(*) AS fact_count
FROM sales_fact_1997 AS BASE,
 time_by_day AS DIM
WHERE
 BASE.time_id = DIM.time_id
GROUP BY
 BASE.product_id,
 BASE.customer_id,
 DIM.quarter,
 DIM.the_year;

In the above three examples, for the most part the column names in the aggregate are the same
column names that appear in the fact table and dimension tables. These tables would all be
recognized by the Mondrian default aggregate recognizer. It is possible to create an aggregate
table and name the columns arbitrarily. For such an aggregate, an explicit Mondrian recognizer
must be specified.

 - 73 -

CREATE TABLE agg_c_special_sales_fact_1997 (
 PRODUCT_ID INTEGER NOT NULL,
 CUSTOMER_ID INTEGER NOT NULL,
 PROMOTION_ID INTEGER NOT NULL,
 STORE_ID INTEGER NOT NULL,
 TIME_MONTH SMALLINT(6) NOT NULL,
 TIME_QUARTER VARCHAR(30) NOT NULL,
 TIME_YEAR SMALLINT(6) NOT NULL,
 STORE_SALES_SUM DECIMAL(10,4) NOT NULL,
 STORE_COST_SUM DECIMAL(10,4) NOT NULL,
 UNIT_SALES_SUM DECIMAL(10,4) NOT NULL,
 FACT_COUNT INTEGER NOT NULL);

CREATE INDEX i_sls_97_cust_id ON agg_c_special_sale s_fact_1997
(CUSTOMER_ID);
CREATE INDEX i_sls_97_prod_id ON agg_c_special_sale s_fact_1997
(PRODUCT_ID);
CREATE INDEX i_sls_97_promo_id ON agg_c_special_sal es_fact_1997
(PROMOTION_ID);
CREATE INDEX i_sls_97_store_id ON agg_c_special_sal es_fact_1997
(STORE_ID);

INSERT INTO agg_c_special_sales_fact_1997 (
 PRODUCT_ID,
 CUSTOMER_ID,
 PROMOTION_ID,
 STORE_ID,
 TIME_MONTH,
 TIME_QUARTER,
 TIME_YEAR,
 STORE_SALES_SUM,
 STORE_COST_SUM,
 UNIT_SALES_SUM,
 FACT_COUNT)
SELECT
 BASE.product_id,
 BASE.customer_id,
 BASE.promotion_id,
 BASE.store_id,
 DIM.month_of_year,
 DIM.quarter,
 DIM.the_year,
 SUM(BASE.store_sales) AS STORE_SALES_SUM,
 SUM(BASE.store_cost) AS STORE_COST_SUM,
 SUM(BASE.unit_sales) AS UNIT_SALES_SUM,
 COUNT(*) AS FACT_COUNT
FROM
 sales_fact_1997 BASE, time_by_day DIM
WHERE
 BASE.time_id = DIM.time_id
GROUP BY
 BASE.product_id,
 BASE.customer_id,
 BASE.promotion_id,
 BASE.store_id,
 DIM.month_of_year,

 - 74 -

 DIM.quarter,
 DIM.the_year;

This aggregate table has column names that are not identical to those found in the base fact
table and dimension table. It is still a valid aggregate but Mondrian has to be told how to map its
columns into those of the base fact table.

Sometimes with multiple aggregate tables, one aggregate table is an aggregate of not only the
base fact table but also another aggregate table; an aggregate table with lost time and product
dimensions (no time_id and product_id foreign keys) is an aggregate of the base fact table and
an aggregate which only has a lost time dimension (no time_id foreign key). In this case, one
might first build the aggregate with only the lost time dimension and then build the aggregate
with both lost time and product dimensions from that first aggregate - it will be faster (in some
cases, much faster) to populate the second aggregate from the first rather than from the base
fact table.

One last note, when creating aggregate tables from the base fact table pay attention to the size
of the numeric columns - what might be big enough in the base fact table might not be big
enough in an aggregate.

How Mondrian recognizes Aggregate Tables

Mondrian has to know about the aggregate tables in order to use them. You can either define an
aggregate explicitly, or set up rules to recognize several aggregate tables at the same time.

How Mondrian recognizes aggregate table names and columns pretty much dictates how one
must name those table names and columns when creating them in the first place!

Rules

Rules are templates, designed to work for all fact table names and their column names. These
rules are templates of regular expressions that are instantiated with the names of a fact table
and its columns. In order to describe the rule templates, a name that instantiate a rule are
represented in a rule by have the name bracketed by "${" and "}". As an example,
"abc_${name}_xyz" is a rule parameterized by "name". When name is "john" the template
becomes "abc_john_xyz".

The regular expression engine used here and a definition of the allowed regular expression
grammar is found in the Java regular expression Pattern class: java.util.regex.Pattern.

In order that a table be recognized as an aggregate table, Mondrian must be able to map from
the fact table foreign key columns and measure columns and those in the aggregate table. In
addition, Mondrian must identify the fact count column in the aggregate and possible level
columns (which would appear in an aggregate table if it had a "collapsed" dimension). What
follows is a description of the steps taken in the identification of aggregate tables by the default
recognizer. If at any step, a match fails, the table is rejected as an aggregate table.

Starting off, the candidate aggregate table's name must comply with the aggregate table name
rule. Represented as a template regular expression the rule is:

agg_.+_${fact_table_name}

 - 75 -

which is parameterized with the fact table's name. (In addition, this rule is applied in "ignore
case" mode.) This means that an aggregate table's name must start with "agg_" (ignoring
character case), followed by at least one character, then the '_' character and, lastly, the name of
the fact table. The ".+" in the template has special meaning in a regular expression - it matches
one or more characters.

As an example of applying the aggregate table name rule, let the fact table be called
sales_fact_1997 , the Sales cube's fact table from the FoodMart schema. Applying the

specific fact table name to the regular expression template creates the following regular
expression:

agg_.+_sales_fact_1997

This will match the following table names:

• agg_l_05_sales_fact_1997

• agg_c_14_sales_fact_1997

• agg_lc_100_sales_fact_1997

• agg_c_special_sales_fact_1997

• AGG_45_SALES_FACT_1997
• AGG_drop_time_id_sales_fact_1997

The aggregate table name recognition mechanism has one additional programatic feature, one
can specify that only a portion of the base fact table name be used as the basis of template
name. For instance, if the DBA demanded that all fact tables begin with the string "fact_", e.g.,
"fact_sales_fact_1997", one would certainly not want that string to have to be part of each
aggregate table's name. The aggregate table name recognition mechanism allows one to specify
a regular expression with one and only one group clause (a group clause is a pattern bracketed
by '(' and ')'). Whatever is matched by the contents of the group clause is taken to be the part of
the fact table name to be used in the matching template. This regular expression containing the
group clause is specified as the "basename" attribute. The default Mondrian aggregate table
recognizer does not use this feature. For more information see the associated developer's note
link.

After the default recognizer determines that a table's name matches the aggregate table
template regular expression for a given fact table, it then attempts to match columns. The first
column tested for is the "fact count" column. Here the candidate aggregate table must have a
column called "fact_count" (ignoring case) and this column's type must be numeric. The following
examples would match as "fact count" columns.

fact_count
FACT_COUNT
fact_COUNT

Following matching the "fact count" column, the candidate aggregate table's columns are
examined for possible foreign key matches. For each of the foreign key column names in the fact
table it is determined if there are any character case independent matches of the aggregate
table's columns. Those columns that match are noted. It is alright if no columns match; the
aggregate might be a "collapsed" dimension aggregate with no fact table foreign keys remaining.
If the fact table had foreign key columns "store_id" and "time_id", then the following aggregate
table columns (for example) would match:

 - 76 -

• time_id

• store_id

• TIME_ID

• STORE_ID

• time_ID

• STORE_id

At this point, matches are looked for the level and measure columns. Both of these matching
rules are multi-part - has sub rules; each rule has more than one possible regular expression that
might match where a match on any one is a match.

There are three sub rules for matching level columns. Each is a template which is parameterized
with 1) the fact table's cube's dimension hierarchy's name, "hierarchy_name", 2) the fact table's
cube's dimension hierarchy's level name, "level_name", 3) the dimension table's level column
name, "level_column_name", and 4) a usage prefix, "usage_prefix", which in most cases is null":

• ${hierarchy_name}_${level_name}

• ${hierarchy_name}_${level_column_name}

• ${usage_prefix}${level_column_name}

• ${level_column_name}

The "usage_prefix" is the value of the DimensionUsage 's or private Dimension 's optional

usagePrefix attribute. It can be the case that a "level_column_name", the name of a

dimension's level column, is the same for more than one dimension. During aggregate
recognition for collapsed dimension aggregates where the base fact table has two or more
dimensions with common column names, the attempted recognition will fail unless in the schema
catalog the usagePrefix attribute is used to disambiguate those column names. Of course, one

must also remember to prefix the the column in the aggregate table with the same prefix.

As an example of usagePrefix , consider a fact table named ORDERS which has two

DimensionUsage s, one for the CUSTOMER dimension and the other for the WHOLESALER
dimension where each dimension has a level column named CUST_NM. In this case, a collapsed

aggregate table could not include a column named CUST_NM because there would be no way to

tell which dimension to associate it with. But if in the CUSTOMER' DimensionUsage the

usagePrefix had the value "CU_", while the WHOLESALER's usagePrefix had the value

"WS_", and the aggregate table column was named WS_CUST_NM, then the recognizer could

associate the column with the WHOLESALER dimension.

In the case of a private Dimension , a usagePrefix need only be used if there is a public,

shared Dimension that has the same name and has a "level_column_name" that is also the

same. Without the usagePrefix there would be no way of disambiguating collapsed dimension
aggregate tables.

If any of these parameters have space characters, ' ', these are mapped to underscore
characters, '_', and, similarly, dot characters, '.', are also mapped to underscores. So, if the
hierarchy_name is "Time", level_name is "Month" and level_column_name is month_of_year, the
possible aggregate table column names are:

• time_month

• time_month_of_year

 - 77 -

• month_of_year

For this rule, the "hierarchy_name" and "level_name" are converted to lower case while the
"level_column_name" must match exactly.

Lastly, there is the rule for measures. There are three parameters to matching aggregate
columns to measures: 1) the fact table's cube's measure name, "measure_name", 2) the fact
table's cube's measure column name, "measure_column_name", and 3) the fact table's cube's
measure's aggregator (sum, avg, max, etc.), "aggregate_name".

• ${measure_name}

• ${measure_column_name}

• ${measure_column_name}_${aggregate_name}

where the measure name is converted to lower case and both the measure column name and
aggregate name are matched as they appear. If the fact table's cube's measure name was, "Avg
Unit Sales", the fact table's measure column name is "unit_sales", and, lastly, the fact table's
cube's measure's aggregate name is "avg", then possible aggregate table column names that
would match are:

• avg_unit_sales

• unit_sales

• unit_sales_avg

For Mondrian developers there are additional notes describing the default rule recognition
schema.

Explicit aggregates

On a per cube basis, in a schema file a user can both include and exclude aggregate tables. A
table that would have been include as an aggregate by the default rules can be explicitly
excluded. A table that would not be include by the default rules can be explicitly included. A table
that would have only been partially recognized by the default rules and, therefore, resulted in a
warning or error message, can be explicitly include in rules specified in the cube's definition.

Below is an example for the FoodMart Sales cube with fact table sales_fact_1997 . There

are child elements of the Table element that deal with aggregate table recognition.

<Cube name="Sales">
 <Table name="sales_fact_1997">
 <AggExclude name="agg_c_14_sales_fact_1997" />
 <AggExclude name="agg_lc_10_sales_fact_1997" />
 <AggExclude name="agg_pc_10_sales_fact_1997" />

 <AggName name="agg_c_special_sales_fact_1997">
 <AggFactCount column="FACT_COUNT"/>
 <AggIgnoreColumn column="admin_one"/>
 <AggIgnoreColumn column="admin_two"/>
 <AggForeignKey factColumn="product_id" aggC olumn="PRODUCT_ID"
/>
 <AggForeignKey factColumn="customer_id" agg Column="CUSTOMER_ID"

 - 78 -

/>

 <AggForeignKey factColumn="promotion_id"
aggColumn="PROMOTION_ID" />
 <AggForeignKey factColumn="store_id" aggCol umn="STORE_ID" />
 <AggMeasure name="[Measures].[Unit Sales]"
column="UNIT_SALES_SUM" />
 <AggMeasure name="[Measures].[Store Cost]"
column="STORE_COST_SUM" />
 <AggMeasure name="[Measures].[Store Sales]"
column="STORE_SALES_SUM" />
 <AggLevel name="[Time].[Year]" column="TIME _YEAR" />

 <AggLevel name="[Time].[Quarter]" column="T IME_QUARTER" />
 <AggLevel name="[Time].[Month]" column="TIM E_MONTH" />
 </AggName>
 <AggPattern pattern="agg_sales_fact_1997_.*">

 <AggExclude name="agg_sales_fact_1997_olddata" />
 <AggExclude pattern="agg_sales_fact_1997_test.* " />

 </AggPattern>

 </Table>
....
</Cube>

The AggExclude elements define tables that should not be considered aggregates of the fact

table. In this case Mondrian is instructed to ignore the tables agg_c_14_sales_fact_1997 ,

agg_lc_10_sales_fact_1997 and agg_pc_10_sales_fact_1997 . Following the excludes

is the AggName element which identifies the name of an aggregate table table,

agg_c_special_sales_fact_1997 , and rules for mapping names from the fact table and

cube to it. The two AggIgnoreColumn elements are used to specifically state to Mondrian that

the columns admin_one and admin_two are known and should be ignored. If these columns

were not so identified, Mondrian at the end of determining the fitness of the
agg_c_special_sales_fact_1997 table to be an aggregate of the sales_fact_1997 fact

table would complain that there were extra unidentified columns and that the mapping was
incomplete. The AggForeignKey elements define mappings from the sales_fact_1997 fact

table foreign key column names into the agg_c_special_sales_fact_1997 aggregate table
column names.

Both the AggMeasure and AggLevel elements map "logical" name, names defined in the
cube's schema, to the aggregate table's column names. An aggregate table does not have to
have all of the measures that are found in the base fact table, so it is not a requirement that all
of the fact table measures appear as AggMeasure mappings, though it will certainly be the most

common case. The most notable exception are distinct-count measures; such a measure

can be aggregated, but one can not in general aggregate further on the measure - the
"distinctness" of the measure has been lost during the first aggregation.

The AggLevel entries correspond to collapsed dimensions. For each collapsed dimension there
is a hierarchy of levels spanning from the top level down to some intermediate level (with no
gaps).

 - 79 -

The AggName element is followed by an AggPattern element. This matches candidate
aggregate table names using a regular expression. Included as child elements of the
AggPattern element are two AggExclude elements. These specifically state what table names

should not be considered by this AggPattern element.

In a given Table element, all of the AggExclude are applied first, followed by the AggName
element rules and then the AggPattern rules. In the case where the same fact table is used by
multiple cubes, the above still applies, but its across all of the aggregation rules in all of the
multiple cube's Table elements. The first "Agg" element, name or pattern, that matches per
candidate aggregate table name has its associated rules applied.

Most of the time, the scope of these include/exclude statements apply only to the cube in
question, but not always. A cube has a fact table and it is the characteristics of the fact table (like
column names) against which some of the aggregate table rules are applied. But, a fact table can
actually be the basis of more than one cube. In the FoodMart schema the sales_fact_1997

fact table applies to both the Sales and the Sales Ragged cubes. What this means is that any

explicit rules defined in the Sales cube also applies to the Sales Ragged cube and visa versa.

One feature of the explicit recognizer is very useful. With a single line in the cubes definition in
the schema file, one can force Mondrian not to recognize any aggregate tables for the cube's fact
table. As an example, for the FoodMart Sales cube the following excludes all aggregate tables
because the regular expression pattern ".*" matches all candidate aggregate table names.

<Table name="sales_fact_1997" > <AggExclude pat tern=".*" />
</Table>

During aggregate table recognition, rather than fail silently, Mondrian is rather noisy about things
it can not figure out.

Aggregate tables and parent-child hierarchies

A parent-child hierarchy is a special kind of hierarchy where members can have arbitrary depth.
The classic example of a parent-child hierarchy is an employee org-chart.

When dealing with parent-child hierarchies, the challenge is to roll up measures of child members
into parent members. For example, when considering an employee Bill who is head of a
department, we want to report not Bill's salary, but Bill's salary plus the sum of his direct and
indirect reports (Eric, Mark and Carla). It is difficult to generate efficient SQL to do this rollup, so
Mondrian provides a special structure called a closure table, which contains the expanded
contents of the hierarchy.

A closure table serves a similar purpose to an aggregate table: it contains a redundant copy of
the data in the database, organized in such a way that Mondrian can access the data efficiently.
An aggregate table speeds up aggregation, whereas a closure table makes it more efficient to
compute hierarchical rollups.

Supposing that a schema contains a large fact table, and one of the hierarchies is a parent-child
hierarchy. Is is possible to make aggregate tables and closure tables work together, to get better
performance? Let's consider a concrete example.

 - 80 -

Cube:
 [Salary]

Dimensions:
 [Employee], with level [Employee]
 [Time], with levels [Year], [Quarter], [Month], [Day]

Fact table:
 salary (employee_id, time_id, dollars)

Parent-child dimension table:
 employee (employee_id, supervisor_id, name)

employee

supervisor_id employee_id name

null 1 Frank

1 2 Bill

2 3 Eric

1 4 Jane

3 5 Mark

2 6 Carla

Closure table:
 employee_closure (employee_id, supervisor_id, d epth)

employee_closure

supervisor_id employee_id distance

1 1 0

1 2 1

1 3 2

1 4 1

1 5 3

1 6 2

2 2 0

2 3 1

2 5 2

2 6 1

3 3 0

3 5 1

4 4 0

5 5 0

6 6 0

Regular dimension table:
 time (year, month, quarter, time_id)

 - 81 -

Aggregate tables at the leaf level of a parent-child hierarchy

The simplest option is to create an aggregate table which joins at the leaf level of the parent-
child hierarchy. The following aggregate table is for leaf members of the [Employee] hierarchy,

and the [Year] level of the [Time] hierarchy.

Aggregate table:
 agg_salary_Employee_Time_Year (employee_id, tim e_year, sum_dollars)

INSERT INTO agg_salary_Employee_Time_Year
SELECT
 salary.employee_id,
 time.year AS time_year,
 sum(salary.dollars) AS sum_dollars
FROM salary,
 time
WHERE time.time_id = salary.time_id
GROUP BY salary.employee_id, time.year

Mondrian can use the aggregate table to retrieve salaries of leaf employees (without rolling up
salaries of child employees). But because the aggregate table has the same foreign key as the
salary fact table, Mondrian is able to automatically join salary.employee_id to either

agg_salary_Employee_Time_Year.employee_id or

agg_salary_Employee_Time_Year.supervisor_id to rollup employees efficiently.

Combined closure and aggregate tables

A more advanced option is to combine the closure table and aggregate table into one:

Aggregate table:
 agg_salary_Employee$Closure_Time_Year (supervis or_id, time_year,
sum_dollars)

INSERT INTO agg_salary_Employee$Closure_Time_Year
SELECT
 ec.supervisor_id,
 time.year AS time_year,
 sum(salary.dollars) AS sum_dollars
FROM employee_closure AS ec,
 salary,
 time
WHERE ec.supervisor_id = salary.employee_id
AND ec.supervisor_id <> ec.employee_id
AND time.time_id = salary.time_id
GROUP BY ec.employee_id, ec.supervisor_id, time.yea r

The agg_salary_Employee$Closure_Time_Year aggregate table contains the salary of

every employee, rolled up to include their direct and indirect reports, aggregated to the [Year]

level of the [Time] dimension.

 - 82 -

The trick: How combined closure and aggregate tables work

Incidentally, this works based upon a 'trick' in Mondrian's internals. Whenever Mondrian sees a
closure table, it creates a auxilliary dimension behind the scenes. In the case of the [Employee]

hierarchy and its employee_closure table, the auxilliary dimension is called

[Employee$Closure] .

Dimension [Employee$Closure], levels [supervisor_id], [employee_id]

When an MDX query evaluates a cell which uses a rolled up salary measure, Mondrian translates
the coordinates of that cell in the [Employee] dimension into a corresponding coordinate in the

[Employee$Closure] dimension. This translation happens before Mondrian starts to search
for a suitable aggregate table, so if your aggregate table contains the name of the auxiliary
hierarchy (as agg_salary_Employee$Closure_Time_Year contains the name of the
[Employee$Closure] hierarchy) it find and use the aggregate table in the ordinary way.

How Mondrian uses aggregate tables

Choosing between aggregate tables

If more than one aggregate table matches a particular query, Mondrian needs to choose between
them.

If there is an aggregate table of the same granularity as the query, Mondrian will use it. If there
is no aggregate table at the desired granularity, Mondrian will pick an aggregate table of lower
granularity and roll up from it. In general, Mondrian chooses the aggregate table with the fewest
rows, which is typically the aggregate table with the fewest extra dimensions. See property
mondrian.rolap.aggregates.ChooseByVolume .

Distinct count

There is an important exception for distinct-count measures: they cannot in be rolled up over
arbitrary dimensions. To see why, consider the case of a supermarket chain which has two stores
in the same city. Suppose that Store A has 1000 visits from 800 distinct customers in the month
of July, while Store B has 1500 visits from 900 distinct customers. Clearly the two stores had a
total of 2500 customer visits between them, but how many distinct customers? We can say that
there were at least 900, and maybe as many as 1700, but assuming that some customers visit
both stores, and the real total will be somewhere in between. "Distinct customers" is an example
of a distinct-count measure, and cannot be deduced by rolling up subtotals. You have to go back
to the raw data in the fact table.

There is a special case where it is acceptable to roll up distinct count measures. Suppose that we
know that in July, this city's stores (Store A and B combined) have visits from 600 distinct female
customers and 700 distinct male customers. Can we say that the number of distinct customers in
July is 1300? Yes we can, because we know that the sets of male and female customers cannot
possibly overlap. In technical terms, gender is functionally dependent on customer id.

 - 83 -

The rule for rolling up distinct measures can be stated as follows:

A distinct count measure over key k can be computed by rolling up more granular subtotals only
if the attributes which are being rolled up are functionally dependent on k.

Even with this special case, it is difficult to create enough aggregate tables to satisfy every
possible query. When evaluating a distinct-count measure, Mondrian can only use an aggregate
table if it has the same logical/level granularity as the cell being requested, or can be rolled up to
that granularity only by dropping functionally dependent attributes. If there is no aggregate table
of the desired granularity, Mondrian goes instead against the fact table.

This has implications for aggregate design. If your application makes extensive use of distinct-
count measures, you will need to create an aggregate table for each granularity where it is used.
That could be a lot of aggregate tables! (We hope to have a better solution for this problem in
future releases.)

That said, Mondrian will rollup measures in an aggregate table that contains one or more distinct-
count measures if none of the distinct-count measures are requested. In that respect an
aggregate table containing distinct-count measures are just like any other aggregate table as
long as the distinct-count measures are not needed. And once in memory, distinct-count
measures are cached like other measures, and can be used for future queries.

When building an aggregate table that will contain a distinct-count measure, the measure must
be rolled up to a logical dimension level, which is to say that the aggregate table must be a
collapsed dimension aggregate. If it is rolled up only to the dimension's foreign key, there is no
guarantee that the foreign key is at the same granularity as the lowest logical level, which is
what is used by MDX requests. So for an aggregate table that only rolls the distinct-count
measure to the foreign key granularity, a request of that distinct-count measure may result in
further rollup and, therefore, an error.

Consider the following aggregate table that has lost dimensions customer_id , product_id ,

promotion_id and store_id .

INSERT INTO "agg_l_04_sales_fact_1997" (
 "time_id",
 "store_sales",
 "store_cost",
 "unit_sales",
 "customer_count",
 "fact_count"
) SELECT
 "time_id",
 SUM("store_sales") AS "store_sales",
 SUM("store_cost") AS "store_cost",
 SUM("unit_sales") AS "unit_sales",
 COUNT(DISTINCT "customer_id") AS "customer_coun t",
 COUNT(*) AS "fact_count"
FROM "sales_fact_1997"
GROUP BY "time_id";

This aggregate table is useless for computing the "customer_count" measure. Why? The

distinct-count measure is rolled up to the time_id granularity, the lowest level granularity of the

physical database table time_by_day . Even a query against the lowest level in the Time

 - 84 -

dimension would require a rollup from time_id to month_of_year , and this is impossible to
perform.

Now consider this collapsed Time dimension aggregate table that has the same lost dimensions

customer_id , product_id , promotion_id and store_id . The time_id foreign key is no

longer present, rather it has been replaced with the logical levels the_year , quarter and

month_of_year .

INSERT INTO "agg_c_10_sales_fact_1997" (
 "month_of_year",
 "quarter",
 "the_year",
 "store_sales",
 "store_cost",
 "unit_sales",
 "customer_count",
 "fact_count"
) SELECT
 "D"."month_of_year",
 "D"."quarter",
 "D"."the_year",
 SUM("B"."store_sales") AS "store_sales",
 SUM("B"."store_cost") AS "store_cost",
 SUM("B"."unit_sales") AS "unit_sales",
 COUNT(DISTINCT "customer_id") AS "customer_coun t",
 COUNT(*) AS fact_count
FROM
 "sales_fact_1997" "B",
 "time_by_day" "D"
WHERE
 "B"."time_id" = "D"."time_id"
GROUP BY
 "D"."month_of_year",
 "D"."quarter",
 "D"."the_year";

This aggregate table of the distinct-count measure can be used to fulfill a query as long as the
query specifies the Time dimension down to the month_of_year level.

The general rule when building aggregate tables involving distinct-count measures is that there
can be NO foreign keys remaining in the aggregate table - for each base table foreign key, it
must either be dropped, a lost dimension aggregate, or it must be replaces with levels, a
collapsed dimension aggregate. In fact, this rule, though not required, is useful to follow when
creating any aggregate table; there is no value in maintaining foreign keys in aggregate tables.
They should be replaced by collapsing to levels unless the larger memory used by such
aggregate tables is to much for one's database system.

 - 85 -

A better design for the aggregate table would include a few attributes which are functionally
dependent on customer_id , the key for the distinct-count measure:

INSERT INTO "agg_c_12_sales_fact_1997" (
 "country",
 "gender",
 "marital_status",
 "month_of_year",
 "quarter",
 "the_year",
 "store_sales",
 "store_cost",
 "unit_sales",
 "customer_count",
 "fact_count"
) SELECT
 "D"."month_of_year",
 "D"."quarter",
 "D"."the_year",
 SUM("B"."store_sales") AS "store_sales",
 SUM("B"."store_cost") AS "store_cost",
 SUM("B"."unit_sales") AS "unit_sales",
 COUNT(DISTINCT "customer_id") AS "customer_coun t",
 COUNT(*) AS fact_count
FROM
 "sales_fact_1997" "B",
 "time_by_day" "D",
 "customer" "C"
WHERE
 "B"."time_id" = "D"."time_id"
AND "B".customer_id" = "C"."customer_id"
GROUP BY
 "C"."country",
 "C"."gender",
 "C"."marital_status",
 "D"."month_of_year",
 "D"."quarter",
 "D"."the_year";

The added attributes are "country" , "gender" and "marital_status" . This table has only

appoximately 12x the number of rows of the previous aggregate table (3 values of country x 2

values of gender x 2 values of marital_status) but can answer many more potential

queries.

Tools for designing and maintaining aggregate table s

Aggregate tables are difficult to design and maintain. We make no bones about it. But this is the
first release in which aggregate tables have been available, and we decided to get the internals
right rather than building a toolset to make them easy to use.

Unless your dataset is very large, Mondrian's performance will be just fine without aggregate
tables. If Mondrian isn't performing well, you should first check that your DBMS is well-tuned: see
our guide to optimizing performance). If decide to build aggregate tables anyway, we don't offer

 - 86 -

any tools to help administrators design them, so unless you are blessed with superhuman
patience and intuition, using them won't be smooth sailing.

Here are some ideas for tools we'd like to build in the future. I'm thinking of these being utilities,
not part of the core runtime engine. There's plenty of room to wrap these utilities in nice
graphical interfaces, make them smarter.

AggGen (aggregate generator)

AggGen is a tool that generates SQL to support the creation and maintenance of aggregate
tables, and would give a template for the creation of materialized views for databases that
support those. Given an MDX query, the generated create/insert SQL is optimal for the given
query. The generated SQL covers both the "lost" and "collapsed" dimensions. For usage, see the
documentation for CmdRunner.

Aggregate table populater

This utility populates (or generates INSERT statements to populate) the agg tables.

For extra credit: populate the tables in topological order, so that higher level aggregations can be
built from lower level aggregations. (See [AAD+96]).

Script generator

This utility generates a script containing CREATE TABLE and CREATE INDEX statements all
possible aggregate tables (including indexes), XML for these tables, and comments indicating the
estimated number of rows in these tables. Clearly this will be a huge script, and it would be
ridiculous to create all of these tables. The person designing the schema could copy/paste from
this file to create their own schema.

Recommender

This utility (maybe graphical, maybe text-based) recommends a set of aggregate tables. This is
essentially an optimization algorithm, and it is described in the academic literature [AAD+96].
Constraints on the optimization process are the amount of storage required, the estimated time
to populate the agg tables.

The algorithm could also take into account usage information. A set of sample queries could be
an input to the utility, or the utility could run as a background task, consuming the query log and
dynamically making recommendations.

Online/offline control

This utility would allow agg tables to be taken offline/online while Mondrian is still running.

Properties which affect aggregates

Mondrian has properties that control the behavior of its aggregate table sub-system. (You can
find the full set of properties in the Configuration Guide.)

 - 87 -

Property Type
Default

Value
Description

mondrian.
rolap.
aggregates.
Use

boolean false

If set to true, then Mondrian uses any
aggregate tables that have been
read. These tables are then
candidates for use in fulfilling MDX
queries. If set to false, then no
aggregate table related activity takes
place in Mondrian.

mondrian.
rolap.
aggregates.
Read

boolean false

If set to true, then Mondrian reads
the database schema and recognizes
aggregate tables. These tables are
then candidates for use in fulfilling
MDX queries. If set to false, then
aggregate table will not be read from
the database. Of course, after
aggregate tables have been read,
they are read, so setting this property
false after starting with the property
being true, has no effect. Mondrian
will not actually use the aggregate
tables unless the mondrian.rolap.
aggregates.Use property is set to
true.

mondrian.
rolap.
aggregates.
ChooseByVolume

boolean false

Currently, Mondrian support to
algorithms for selecting which
aggregate table to use: the
aggregate with smallest row count or
the aggregate with smallest volume
(row count * row size). If set to false,
then row count is used. If true, then
volume is used.

mondrian.
rolap.
aggregates.
rules

resource
or url

/Default
Rules.xml

This is a developer property, not a
user property. Setting this to a url
(e.g., file://c:/myrules.xml)
allows one to use their own "default"
Mondrian aggregate table recognition
rules. In general use this should
never be changed from the default
value.

mondrian.
rolap.
aggregates.
rule. tag

string default

This is also a developer property. It
allows one to pick which named rule
in the default rule file to use. In
general use this should never be
changed from the default value.

 - 88 -

Aggregate Table References

[AAD+96]

S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F. Naughton,
R. Ramakrishnan, and S. Sarawagi. On the computation of
multidimensional aggregates. In Proc. 22nd VLDB, pages 506-521,
Mumbai, Sept. 1996. [pdf]

[ABDGHLS99]

J. Albrecht, A. Bauer, O. Deyerling, H. Gunze, W. Hummer, W.
Lehner, L. Schlesinger. Management of Multidimensional Aggregates
for Efficient Online Analytical Processing. Proceedings of
International Database Engineering and Applications Symposium,
1999, pp. 156–164. [pdf]

[GBLP96]

J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A
relational aggregation operator generalizing group-by, cross-tab,
and sub-totals. In Proc. 12th ICDE, pages 152-159, New Orleans,
March 1996. [pdf]

[HNSS95]

P.J. Haas, J.F. Naughton, S. Seshadri, and L. Stokes. Sampling-
based estimation of the number of distinct values of an attribute.
Proceedings of the Eighth International Conference on Very Large
Databases (VLDB), pages 311–322, Zurich, Switzerland, September
1995. [pdf]

[Rittman05]
M. Rittman. Compressed Composites (Oracle 10g Compression)
Explained. Online article. [html]

[SDNR96]
Amit Shukla, Prasad Deshpande, Jeffrey F. Naughton, Karthikeyan
Ramasamy. Storage Estimation for Multidimensional Aggregates in
the Presence of Hierarchies. VLDB 1996, pp. 522–531. [pdf]

 - 89 -

Mondrian CmdRunner
Copyright (C) 2005-2006 Julian Hyde, Richard Emberson and others

What is CmdRunner?

CmdRunner is a command line interpreter for Mondrian. From within the command interpreter or
in a command file: properties can be set and values displayed, logging levels changed, built-in
function usages displayed, parameter values displayed and set, per-cube attributes displayed and
set, results and errors from the previous MDX command displayed and, of course, MDX queries
evaluated.

For Mondrian developers new features can be quickly tested with CmdRunner. As an example, to

test a new user-defined function all one need to is add it to the schema, add the location of the
function's java class to the class path, point CmdRunner at the schema and execute a MDX query

that uses the new function.

For MDX developers, CmdRunner lets one test a new MDX query or Mondrian schema without
having to run Mondrian in a Webserver using JPivot. Rather, one can have the new MDX query in
a file and point CmdRunner at it. Granted, the output is a list, possibly long, of row and column

entries; but sometimes all one needs from CmdRunner is to know that the query runs and other

times one can always post process the output into excel or gnuplot, etc.

Building

There are two ways to run the command interpreter. The first is to have a script create a class
path with all of the needed mondrian and support jars in it and then have java execute the
CmdRunner main method. The second is to build a jar that contains all of the needed classes and
simply have java reference the jar using the -jar argument.

To build the CmdRunner combined jar from the shell command line execute the following build
command:

mondrian> ./build.sh cmdrunner

This will create the jar cmdrunner.jar in the MONDRIAN_HOME/lib directory. For this build to
create a jar that can actually be used it is important that the JDBC jar for your database be
placed in the MONDRIAN_HOME/testlib directory prior to executing the build command.

What is useful about the cmdrunner.jar is that it can be executed without having to have the

MONDRIAN_HOME directory around since it bundles up everything that is needed (other than the
properties and schema files).

Usage

There are two ways to invoke CmdRunner: using the cmdrunner.jar or using a script that
builds a class path of the required jars and then executes java with that class path. The former is
an easy "canned" solution but requires building the cmdrunner.jar while the later is quicker if

you are in a code, compile and test cycle.

 - 90 -

To run CmdRunner using the cmdrunner.jar from the shell prompt execute:

somedir> java -jar cmdrunner.jar -p foodmart.proper ties

In the MONDRIAN_HOME/bin directory there are the shell scripts cmdrunner.sh and

cmdrunner.cmd that can be used duplicating the above command:

mondrian> ./bin/cmdrunner.sh -p foodmart.properties

To run CmdRunner without first building the cmdrunner.jar there is the run.sh in the

MONDRIAN_HOME/bin directory. This script creates a class path and includes all jars in the

MONDRIAN_HOME/testlib directory where the jdbc jars are located.

mondrian> ./bin/run.sh -p foodmart.properties

Properties File

Below is an example properties file:

####################
#######

Example properties file

$Id: //open/mondrian/doc/cmdrunner.html#10 $
####################
#######
Environment
mondrian.catalogURL=file:///home/madonna/mondrian/F oodMartSchema.xml

mysql
mondrian.foodmart.jdbcURL=jdbc:mysql://localhost/fo odmart?user=foodmart
&password=foodmart
mondrian.jdbcDrivers=com.mysql.jdbc.Driver

Use MD5 based caching for the RolapSchema instanc e
mondrian.catalog.content.cache.enabled=true

both read and use aggregate tables
mondrian.rolap.aggregates.Use=true
mondrian.rolap.aggregates.Read=true

generate aggregate sql (for every mdx query)
#mondrian.rolap.aggregates.generateSql=true

pretty print sql (if log level for mondrian.rolap .RolapUtil is DEBUG)
mondrian.rolap.generate.formatted.sql=true

by default the aggregate table with the smallest number of rows
(rather than rows times size of each row) is used
#mondrian.rolap.aggregates.ChooseByVolume=true

 - 91 -

Command line arguments

CmdRunner has the following command line options:

Option Description

-h Print help, the list of command line options.

-d Enable CmdRunner debugging. This does not change this log level.

-t Time each mdx query's execution.

-nocache Regardless of the settings in the Schema file, set each Cube to no in-
memory aggregate caching (caching is turned off so each query goes
to the database).

-rc Do not reload the connection after each query (the default is to
reload the connection. Its safe to just ignore this.

-p property-file Specify the Mondrian property file. This argument is basically required
for any but the most trivial command interpreter commands. To
execute a MDX query or request information about a function, the
property file must be supplied. On the other hand, to have the
CmdRunner print out its internal help, then the property file is not
needed.

-f filename+ Specify the name of one or more files that contains CmdRunner
commands. If this argument is not supplied, then the interpreter
starting in the command entry mode. After the -f is seen, all

subsequent arguments are interpreted as filenames.

-x xmla_filename+ Specify the name of one or more files that contains XMAL request
that has no SOAP wrapper. After the -x is seen, all subsequent
arguments are interpreted as XMLA filenames.

-xs
soap_xmla_filename+

Specify the name of one or more files that contains XMAL request
with a SOAP wrapper. After the -xs is seen, all subsequent
arguments are interpreted as SOAP XMLA filenames.

-vt Validate the XMLA response using XSLT transform. This can only be
used with the -x or -xs flags.

-vx Validate the XMLA response using XPaths. This can only be used with
the -x or -xs flags.

mdx_command A string representing one or more CmdRunner commands.

CmdRunner Commands

The command interpreter has a fixed set of built in commands. When a line is read, if the first
word of the line matches one of the commands, then the rest of the line is assumed to be
arguments to that command. On the other hand, if the first word does not match a built in
command, then all text until a ';' is seen or until a '=' is entered by itself on a command
continuation line is seen will be passed to the Mondrian query engine.

help

> help <cr>

 - 92 -

Prints help for all commands.

set

> set [property[=value]] <cr>

With no args, prints all mondrian properties and values.

With "property" prints property's value.

With "property=value" set property to that value.

log

> log [classname[=level]] <cr>

With no args, prints the current log level of all classes.

With "classname" prints the current log level of the class.

With "classname=level" set log level to new value.

file

> file [filename | '='] <cr>

With no args, prints the last filename executed.

With "filename", read and execute filename.

With "=" character, re-read and re-execute previous filename.

list

> list [cmd | result] <cr>

With no arguments, list previous cmd and result

With "cmd" argument, list the last mdx query cmd.

With "result" argument, list the last mdx query result.

func

> func [name] <cr>

With no arguments, list all defined function names.

 - 93 -

With "name" argument, display the functions: name, description, and syntax.

param

> param [name[=value]] <cr>

With no arguments, all param name/value pairs are printed.

With "name" argument, the value of the param is printed.

With "name=value" sets the parameter with name to value. If name is null, then unsets all
parameters. If value is null, then unsets the parameter associated with value.

cube

> cube [cubename [name [=value | command]]] <cr >

With no arguments, all cubes are listed by name.

With "cubename" argument, cube attribute name/values for: fact table (readonly) aggregate
caching (readwrite) are printed.

With "cubename name=value", sets the readwrite attribute with name to value.

With "cubename command", executes the commands: clearCache.

error

> error [msg | stack] <cr>

With no arguments, both message and stack are printed.

With "msg" argument, the Error message is printed.

With "stack" argument, the Error stack trace is printed.

echo

> echo text <cr>

Prints text to standard out.

expr

> expr cubename expression <cr>

Evaluates an expression against a cube

 - 94 -

=

> = <cr>

Re-executes previous MDX query.

~

> ~ <cr>

Clears any text entered so far for the current command.

exit

> exit <cr>

Exits the MDX command interpreter.

run an MDX query

> <mdx query> ([';'] <cr> | <cr> ('=' | '~') < cr>)

Executes or cancels an MDX query.

An MDX query may span one or more lines. The continuation prompt is a '?'.

After the last line of the query has been entered, on the next line a single execute character, '=',
may be entered followed by a carriage return. The lone '=' informs the interpreter that the query
has has been entered and is ready to execute.

At anytime during the entry of a query the cancel character, '~', may be entered alone on a line.
This removes all of the query text from the the command interpreter.

Queries can also be ended by using a semicolon ';' at the end of a line.

During general operation, Mondrian Property triggers are disabled. If you enable Mondrian
Property triggers for a CmdRunner session, either in the property file read on starup or by
explicitly using the set property command

> set mondrian.olap.triggers.enable=true <cr>

then one can force a re-scanning of the database for aggregate tables by disabling and then re-
enabling the use of aggregates:

> set mondrian.olap.aggregates.Read=false <cr>
> set mondrian.olap.aggregates.Read=true <cr>

In fact, as long as one does not use the -rc command line argument so that a new connection is
gotten every time a query is executed, one can edit the Mondrian schema file between MDX

 - 95 -

query execute. This allows one to not only change what aggregates tables are in seen by
Mondrian but also the definitions of the cubes within a given CmdRunner session.

Similarly, one can change between aggregate table partial ordering algorithm by changing the
value of the associated property, mondrian.olap.aggregates.ChooseByVolume thus

triggering internal code to reorder the aggregate table lookup order.

Within the command interpreter there is no ability to edit a previously entered MDX query. If you
wish to iteratively edit and run a MDX query, put the query in a file, tell the CmdRunner to
execute the file using the file command, re-execute the file using the = command, and in

separate window edit/save MDX in the file.

There is also no support for a command history (other than the '=' command).

AggGen: Aggregate SQL Generator

Mondrian release 1.2 introduced Aggregate Tables as a means of improving performance, but
aggregate tables are difficult to use without tools to support them.

CmdRunner includes a utility called AggGen, the Aggregate Table Generator. With it, you can
issue an MDX query, and generate a script to create and populate the appropriate aggregate
tables to support that MDX query. (The query does not actually return a result.)

In the property file provided to the CmdRunner at startup add the line:

mondrian.rolap.aggregates.generateSql=true

or from the CmdRunner command line enter:

> set mondrian.rolap.aggregates.generateSql=true <c r>

This instructs Mondrian whenever an MDX query is executed (and the cube associated with the
query is not virtual) to output to standard out the Sql associated with the creation and population
of both the "lost" dimension aggregate table and the "collapsed" dimension aggregate table
which would be best suited to optimize the given MDX query. This Sql has to be edited to change
the "l_XXX" in the "lost" dimension statements or "c_XXX" in the "collapsed" dimension
statements to more appropriate table names (remembering to make sure that the new names
can still be recognized by Mondrian as aggregates of the particular fact table).

As an example, if the following MDX is run against a MySql system:

WITH MEMBER
 [Store].[Nat'l Avg] AS
 'AVG({ [Store].[Store Country].Members}, [Meas ures].[Units
Shipped])'
SELECT
 { [Store].[Store Country].Members, [Store].[Nat 'l Avg] } ON
COLUMNS,
 { [Product].[Product Family].[Non-Consumable].C hildren } ON ROWS
FROM
 [Warehouse]

 - 96 -

WHERE
 [Measures].[Units Shipped];

Then the following is written to standard output:

WARN [main] AggGen For RolapStar: "inventory_fact_ 1997" measure with
name, "warehouse_sales"-"inventory_fact_1997"."ware house_cost", is not
a column
name. The measure's column name may be an expressio n and currently
AggGen does
not handle expressions. You will have to add this m easure to the
aggregate table
definition by hand.

CREATE TABLE agg_l_XXX_inventory_fact_1997 (
 time_id INT,
 product_id INT NOT NULL,
 store_id INT,
 store_invoice DECIMAL(10,4),
 supply_time SMALLINT,
 warehouse_cost DECIMAL(10,4),
 warehouse_sales DECIMAL(10,4),
 units_shipped INT,
 units_ordered INT,
 fact_count INTEGER NOT NULL);

INSERT INTO agg_l_XXX_inventory_fact_1997 (
 time_id,
 product_id,
 store_id,
 store_invoice,
 supply_time,
 warehouse_cost,
 warehouse_sales,
 units_shipped,
 units_ordered,
 fact_count)
SELECT
 `inventory_fact_1997`.`time_id` AS `time_id`,
 `inventory_fact_1997`.`product_id` AS `product_ id`,
 `inventory_fact_1997`.`store_id` AS `store_id`,
 SUM(`inventory_fact_1997`.`store_invoice`) AS ` store_invoice`,
 SUM(`inventory_fact_1997`.`supply_time`) AS `su pply_time`,
 SUM(`inventory_fact_1997`.`warehouse_cost`) AS `warehouse_cost`,
 SUM(`inventory_fact_1997`.`warehouse_sales`) AS `warehouse_sales`,
 SUM(`inventory_fact_1997`.`units_shipped`) AS ` units_shipped`,
 SUM(`inventory_fact_1997`.`units_ordered`) AS ` units_ordered`,
 COUNT(*) AS `fact_count`
FROM
 `inventory_fact_1997` AS `inventory_fact_1997`
GROUP BY
 `inventory_fact_1997`.`time_id`,
 `inventory_fact_1997`.`product_id`,
 `inventory_fact_1997`.`store_id`;

CREATE TABLE agg_c_XXX_inventory_fact_1997 (

 - 97 -

 product_family VARCHAR(30),
 product_department VARCHAR(30),
 store_country VARCHAR(30),
 the_year SMALLINT,
 store_invoice DECIMAL(10,4),
 supply_time SMALLINT,
 warehouse_cost DECIMAL(10,4),
 warehouse_sales DECIMAL(10,4),
 units_shipped INT,
 units_ordered INT,
 fact_count INTEGER NOT NULL);

INSERT INTO agg_c_XXX_inventory_fact_1997 (
 product_family,
 product_department,
 store_country,
 the_year,
 store_invoice,
 supply_time,
 warehouse_cost,
 warehouse_sales,
 units_shipped,
 units_ordered,
 fact_count)
SELECT
 `product_class`.`product_family` AS `product_fa mily`,
 `product_class`.`product_department` AS `produc t_department`,
 `store`.`store_country` AS `store_country`,
 `time_by_day`.`the_year` AS `the_year`,
 SUM(`inventory_fact_1997`.`store_invoice`) AS ` store_invoice`,
 SUM(`inventory_fact_1997`.`supply_time`) AS `su pply_time`,
 SUM(`inventory_fact_1997`.`warehouse_cost`) AS `warehouse_cost`,
 SUM(`inventory_fact_1997`.`warehouse_sales`) AS `warehouse_sales`,
 SUM(`inventory_fact_1997`.`units_shipped`) AS ` units_shipped`,
 SUM(`inventory_fact_1997`.`units_ordered`) AS ` units_ordered`,
 COUNT(*) AS `fact_count`
FROM
 `inventory_fact_1997` AS `inventory_fact_1997`,
 `product_class` AS `product_class`,
 `product` AS `product`,
 `store` AS `store`,
 `time_by_day` AS `time_by_day`
WHERE
 `product`.`product_class_id` = `product_class`. `product_class_id`
and
 `inventory_fact_1997`.`product_id` = `product`. `product_id` and
 `inventory_fact_1997`.`store_id` = `store`.`sto re_id` and
 `inventory_fact_1997`.`time_id` = `time_by_day` .`time_id`
GROUP BY
 `product_class`.`product_family`,
 `product_class`.`product_department`,
 `store`.`store_country`,
 `time_by_day`.`the_year`;

There are a couple of things to notice about the output.

 - 98 -

First, is the WARN log message. This appears because the inventory_fact_1997 table has a

measure with a column attribute "warehouse_sales"-
"inventory_fact_1997"."warehouse_cost" that is not a column name, its an

expression. The AggGen code does not currently know what to do with such an expression, so it

issues a warning. A user would have to take the generated aggregate table Sql scripts and alter
them to accommodate this measure.

There are two aggregate tables, agg_l_XXX_inventory_fact_1997 the "lost" dimension

case and agg_c_XXX_inventory_fact_1997 the "collapsed" dimension case. The "lost"
dimension table, keeps the foreign keys for those dimension used by the MDX query and discards
the other foreign keys, while the "collapsed" dimension table also discards the foreign keys that
are not needed but, in addition, rolls up or collapses the remaining dimensions to just those
levels needed by the query.

There are no indexes creation Sql statements for the aggregate tables. This is because not all
databases require indexes to achive good performance against star schemas - your mileage may
vary so do some testing. (With MySql indexes are a good idea).

If one is creating a set of aggregate tables, there are cases where it is more efficient to create
the set of aggregates that are just above the fact tables and then create each subsequent level
of aggregates from one of the preceeding aggregate tables rather than always going back to the
fact table.

There are many possible aggregate tables for a given set of fact tables. AggGen just provides
example Sql scripts based upon the MDX query run. Judgement has to be used when creating
aggregate tables. There are tradeoffs such as which are the MDX queries that are run the most
often? How much space does each aggregate table take? How long does it take to create the
aggregate tables? How often does the set of MDX queries change? etc.

During normal Mondrian operation, for instance, with JPivot , it is recommended that the above

AggGen property not be set to true as it will slow down Mondrian and generate a lot of text in

the log file.

 - 99 -

Mondrian FAQs
Copyright (C) 2002-2007 Julian Hyde

Why doesn't Mondrian use a standard API?

Because there isn't one. MDX is a component of Microsoft's OLE DB for OLAP standard which, as
the name implies, only runs on Windows. Mondrian's API is fairly similar in flavor to ADO MD
(ActiveX Data Objects for Multidimensional), a API which Microsoft built in order to make OLE DB
for OLAP easier to use.

XML for Analysis is pretty much OLE DB for OLAP expressed in Web Services rather than COM,
and therefore seems to offer a platform-neutral standard for OLAP, but take-up seems to be
limited to vendors who supported OLE DB for OLAP already.

The other query vendors failed to reach consensus several years ago with the OLAP Council API,
and are now encamped on the JOLAP specification.

We plan to provide a JOLAP API to Mondrian as soon as JOLAP is available.

How does Mondrian's dialect of MDX differ from Micr osoft
Analysis Services?

See MDX language specification.

Not very much.

1. The StrToSet() and StrToTuple() functions take an extra parameter.
2. Parsing is case-sensitive.
3. Pseudo-functions Param() and ParamRef() allow you to create parameterized MDX

statements.

How can Mondrian be extended?
See User-defined functions, Cell readers, Member readers

Can Mondrian handle large datasets?

Yes, if your RDBMS can. We delegate the aggregation to the RDBMS, and if your RDBMS happens
to have materialized group by views created, your query will fly. And the next time you run the
same or a similar query, that will really fly, because the results will be in the aggregation cache.
See the Performance section in this document.

How do I enable tracing?

To enable tracing, set mondrian.trace.level to 1 in mondrian.properties . You will see
text and execution time of each SQL statement, like this:

SqlMemberSource.getLevelMemberCount: executing sql [select count(*) as
`c0` from (select distinct `store`.`store_country` as `c0` from `store`

 - 100 -

as `store`) as `foo`], 110 ms
SqlMemberSource.getMembers: executing sql [select d istinct
`store`.`store_sqft` as `c0` from `store` as `store ` order by
`store`.`store_sqft`], 50 ms

Notes:

• If you are running mondrian from the command-line, or via Ant,
mondrian.properties should be in the current directory.

• If you are running in Tomcat, mondrian.properties should be in

TOMCAT_HOME/bin . Changes will only take effect when you re-start Tomcat. The output
goes to the console from which you started Tomcat.

How do I enable logging?

Mondrian uses the Apache Log4j logger. To build, test, and run Mondrian requires a log4j.jar file.
A log4j.jar file is provided as part of the Mondrian distribution.

Also provided is a log4j.properties file. Such a file is needed when running Mondrian in
standalone mode (such as when running the Mondrian junit tests or the CmdRunner utility).
Generally, Mondrian is embedded in an application, such as a webserver, which may have their
own log4j.properties file or some other mechanism for setting log4j properties. In such cases, the
user must use those for controlling Mondrian's logging.

Mondrian follows Apache's guidance on what type of information is logged at what level:

• FATAL: A very severe error event that will presumably lead the application to abort.

• ERROR: An error event that might still allow the application to continue running.

• WARN: A potentially harmful situation.

• INFO: An informational message that highlight the progress of the application at a

coarse-grained level.
• DEBUG: A fine-grained informational event that is most useful to debug an application.

It is recommended for general use that the Mondrian log level be set to WARN; arguably, its good

to know when things are going South.

Where can I find out more?

MDX Solutions with Microsoft SQL Server Analysis Services by George Spofford is the best book I
have found on MDX. Despite the title, principles it describes can be applied to any RDBMS.

OLAP Solutions: Building Multidimensional Information Systems by Erik Thomsen is a great
overview of multidimensional databases, but does not deal with MDX.

The reference work on data warehousing is The Data Warehouse Toolkit: The Complete Guide to
Dimensional Modeling (Second Edition), by Ralph Kimball, Margy Ross. It covers the business
process well, but the focus is more on star schemas and ROLAP than OLAP.

The Microsoft Analysis Services online documentation has excellent online documentation of
MDX, including a list of MDX functions.

 - 101 -

OLAP Modeling

Measures not stored in the fact table

I am trying to build a cube with measures from 2 different tables. I have tried a virtual cube, but
it does not seem to work - it only relates measures and dimensions from the same table. Is there
a way to specify that a measure is not coming from the fact table? Say using SQL select?

Virtual cubes sound like the right approach. The way to do it is to first create a dummy cube on
your lookup table, with dimensions for as many columns as are applicable. (A classic example of
this kind of cube is an 'ExchangeRate' cube, whose only dimensions are time and currency.)

Then create a virtual cube of the dummy cube and the real cube (onto your fact table).

Note that you will need to use shared dimensions for the cubes to join implicitly.

How can I define my fact table based on an arbitrary SQL
statement?

Use the <View> element INSTEAD OF the <Table> element. You need to specify the 'alias'
attribute, which Mondrian uses as a table alias.

The XML 'CDATA' construct is useful in case there are strange characters in your SQL, but isn't
essential.

<View alias="DFACD_filtered"> <SQL dialect="generic "> <![CDATA[select *
from DFACD where CSOC = '09']]> </SQL> </View>

Why can't Mondrian find my tables?

Consider this scenario. I have created some tables in Oracle, like this:

CREATE TABLE sales (prodid INTEGER, day INTEGER, a mount NUMBER);

and referenced it in my schema.xml like this:

<Cube name="Sales"> <Table name="sales"/> ... <Meas ure name="Sales"
column="amount" aggregator="sum"/> <Measure name="S ales count"
column="prodid" aggregator="count"/> </Cube>

Now I start up Mondrian and get an error ORA-00942: Table or view "sales" does
not exist while executing the SQL statement SELECT "prodid", count(*) FROM
"sales" GROUP BY "prodid" . The query looks valid, and the table exists, so why is Oracle
giving an error?

The problem is that table and column names are case-sensitive. You told Mondrian to look for a
table called "sales", not "SALES" or "Sales".

 - 102 -

Oracle's table and column names are case-sensitive too, provided that you enclose them in
double-quotes, like this:

CREATE TABLE "sales" ("prodid" INTEGER, "day" INTE GER, "amount"
NUMBER);

If you omit the double-quotes, Oracle automatically converts the identifiers to upper-case, so the
first CREATE TABLE command actually created a table called "SALES". When the query gets run,
Mondrian is looking for a table called "sales" (because that's what you called it in your
schema.xml), yet Oracle only has a table called "SALES".

There are two possible solutions. The simplest is to change the objects to upper-case in your
schema.xml file:

<Cube name="Sales"> <Table name="SALES"/> ... <Meas ure name="Sales"
column="AMOUNT" aggregator="sum"/> <Measure name="S ales count"
column="PRODID" aggregator="count"/> </Cube>

Alternatively, if you decide you would like your table and column names to be in lower or mixed
case (or even, for that matter, to contain spaces), then you must double-quote object names
when you issue CREATE TABLE statements to Oracle.

Performance

When I change the data in the RDBMS, the result doesn't
change even if i refresh the browser. Why is this?

Mondrian uses a cache to improve performance. The first time you run a query, Mondrian will
execute various SQL statements to load the data (you can see these statements by turning on
tracing). The next time, it will use the information in the cache.

Cache control is primitive right now. If the data in the RDBMS is modified, Mondrian has no way
to know, and does not refresh its cache. If you are using the JPivot web ui and refresh the
browser, that will simply regenerate the web page, not flush the cache. The only way to refresh
the cache is to call the following piece of code, which flushes the entire contents:

mondrian.rolap.CachePool.instance().flush();

See caching design for more information.

Tuning the Aggregate function

I am using an MDX query with a calculated "aggregate" member. It aggregates the values
between Node A and Node B. The dimension that it is aggregating on is a Time dimension. This
Time dimension has a granularity of one minute. When executing this MDX query, the
performance seems to be fairly bad.

Here is the query:

 - 103 -

WITH MEMBER [Time].[AggregateValues] AS
 'Aggregate([Time].[2004].[October].[1].[12].[10] :
[Time].[2004].[October].[20].[12].[10])'
SELECT [Measures].[Volume] ON ROWS,
 NON EMPTY {[Service].[Name]}
WHERE ([Time].[AggregateValues])

Is this normal behavior? Is there any way I can speed this up?

Answer:

The performance is bad because you are pulling 19 days * 1440 minutes per day = 27360 cells
from the database into memory per cell that you actually display. Mondrian is a lot less efficient
at crunching numbers than the database is, and uses a lot of memory.

The best way to improve performance is to push as much of the processing to the database as
possible. If you were asking for a whole month, it would be easy:

WITH MEMBER [Time].[AggregateValues]
AS 'Aggregate({[Time].[2004].[October]})'
SELECT [Measures].[Volume] ON ROWS,
NON EMPTY {[Service].[Name]}
WHERE ([Time].[AggregateValues])

But since you're working with time periods which are not aligned with the dimensional structure,
you'll have to chop up the interval:

WITH MEMBER [Time].[AggregateValues]
 AS 'Aggregate({
 [Time].[2004].[October].[1].[12].[10]
 : [Time].[2004].[October].[1].[23].[59],
 [Time].[2004].[October].[2]
 : [Time].[2004].[October].[19],
 [Time].[2004].[October].[20].[0].[00]
 : [Time].[2004].[October].[20].[12].[10]})'
SELECT [Measures].[Volume] ON ROWS,
NON EMPTY {[Service].[Name]}
WHERE ([Time].[AggregateValues])

This will retrieve a much smaller number of cells from the database — 18 days + no more than
1440 minutes — and therefore do more of the heavy lifting using SQL's GROUP BY operator. If
you want to improve it still further, introduce hourly aggregates.

 - 104 -

Results Caching – The key to performance
Copyright (C) 2002-2006 Julian Hyde

The various subsystems of Mondrian have different memory requirements. Some of them require
a fixed amount of memory to do their work, whereas others can exploit extra memory to increase
their performance. This is an overview of how the various subsystems use memory.

Caching is a scheme whereby a component uses extra memory when it is available in order to
boost its performance, and when times are hard, it releases memory with loss of performance
but with no loss of correctness. A cache is the use of extra memory when times are good, use
varying amounts of memory.

Garbage collection is carried out by the Java VM to reclaim objects which are unreachable from
'live' objects. A special construct called a soft reference allows objects to be garbage-collected in
hard times.

The garbage collector is not very discriminating in what it chooses to throw out, so mondrian has
its own caching strategy. There are several caches in the system (described below), but they all
of the objects in these caches are registered in the singleton instance of class
mondrian.rolap.CachePool (currently there is just a single instance). The cache pool doesn't
actually store the objects, but handles all of the events related to their life cycle in a cache. It
weighs objects' cost (some function involving their size in bytes and their usefulness, which is
based upon how recently they were used) and their benefit (the effort it would take to re-
compute them).

The cache pool is not infallible — in particular, it can not adapt to conditions where memory is in
short supply — so uses soft references, so that the garbage collector can overrule its wisdom.

Cached objects must obey the following contract:

1. They must implement interface mondrian.rolap.CachePool.Cacheable, which includes
methods to measure objects' cost, benefit, record each time they are used, and tell them
to remove themselves from their cache.

2. They must call CachePool.register(Cacheable) either in their constructor or, in any case,
before they are made visible in their cache.

3. They they must call CachePool.unregister(Cacheable) when they are removed from their
cache and in their finalize() method.

4. They must be despensable: if they disappear, their subsystem will continue to work
correctly, albeit slower. A subsystem can declare an object to be temporarily
indispensable by calling CachePool.pin(Cacheable, Collection) and then unpin it a short
time later.

5. Their cache must reference them via soft references, so that they are available for
garbage collection.

6. Thread safety. Their cache must be thread-safe.

If a cached object takes a significant time to initialize, it may not be possible to construct it,
register it, and initialize it within the same synchronized section without unnacceptably reducing
concurrency. If this is the case, you should use phased construction. First construct and register
the object, but mark it 'under construction'. Then release the lock on the CachePool and the
object's cache, and continue initializing the object. Other threads will be able to see the object,

 - 105 -

and should be able to wait until the object is constructed. The method
Segment.waitUntilLoaded() is an example of this.

The following objects are cached.

Segment

A Segment (class mondrian.rolap.agg.Segment) is a collection of cell values parameterized by a
measure, and a set of (column, value) pairs. An example of a segment is

(Unit sales, Gender = 'F', State in {'CA','OR'}, Marital Status = anything)

All segments over the same set of columns belong to an Aggregation, in this case

('Sales' Star, Gender, State, Marital Status)

Note that different measures (in the same Star) occupy the same Aggregation. Aggregations
belong to the AggregationManager, a singleton.

Segments are pinned during the evaluation of a single MDX query. The query evaluates the
expressions twice. The first pass, it finds which cell values it needs, pins the segments containing
the ones which are already present (one pin-count for each cell value used), and builds a cell
request (class mondrian.rolap.agg.CellRequest) for those which are not present. It executes the
cell request to bring the required cell values into the cache, again, pinned. Then it evalutes the
query a second time, knowing that all cell values are available. Finally, it releases the pins.

Member set

A member set (class mondrian.rolap.SmartMemberReader.ChildrenList) is a set of children of a
particular member. It belongs to a member reader (class mondrian.rolap.SmartMemberReader).

Schema

Schemas (class mondrian.rolap.RolapSchema) are cached in class
mondrian.rolap.RolapSchema.Pool, which is a singleton (todo: use soft references). The cache
key is the URL which the schema was loaded from.

Star schemas

Star schemas (class mondrian.rolap.RolapStar) are stored in the static member
RolapStar.stars (todo: use soft references), and accessed via

RolapStar.getOrCreateStar(RolapSchema, MondrianDef. Relation) .

 - 106 -

Learning more about Mondrian
Copyright (C) 2005-2006 Julian Hyde, Richard Emberson and others

How Mondrian generates SQL

If you're feeling mystified where the various SQL statements come from, here's a good way to
learn more. Give it a try, and if you have more questions I'll be glad to answer them.

In a debugger, put a break point in the RolapUtil.executeQuery() method, and run a
simple query. The easiest way to run a query is to run a junit testcase such as
BasicQueryTest.testSample0(). The debugger will stop every time a SQL statement is executed,
and you should be able to loop up the call stack to which component is executing the query.

I expect that you will see the following phases in the execution:

• One or two SQL queries will be executed as the schema.xml file is read (validating
calculated members and named sets, resolving default members of hierarchies, and
such)

• A few SQL queries will be executed to resolve members as the query is parsed. (For
example, if a query uses [Store].[USA].[CA] , it will look all members of the [Store
Nation] level, then look up all children of the [USA] member.)

• When the query is executed, the axes (slicer, columns, rows) are executed first. Expect
to see more queries on dimension tables when expressions like [Product].children

are evaluated.
• Once the axes are populated, the cells are evaluated. Rather than executing a SQL query

per cell, Mondrian makes a pass over all cells building a list of cells which are not in the
cache. Then it builds and executes a SQL query to fetch all of those cells. If it didn't
manage to fetch all cell values, it will repeat this step until it does.

Remember that the purpose of these queries is to populate cache. There are two caches. The
dimension cache which maps a member to its children, e.g.

[Store].[All Stores] → { [Store].[USA], [Store].[Canada],
[Store].[Mexico]}

The aggregation cache maps a tuple a measure value, e.g.

([Store].[USA], [Gender].[F], [Measures].[Unit Sale s]) → 123,456

Once the cache has been populated, the query won't be executed again. That's why I
recommend that you restart the process each time you run this in the debugger.

 - 107 -

Logging Levels and Information

Some of the Mondrian classes are instrumented with Apache Log4J Loggers. For some of these
classes there are certain logging setting that provide information for not just the code developer
but also for someone setting up a Mondrian installation. The following is a list of some of those
log setting and the associated information.

Category Level Description

mondrian.rolap.aggmatcher.AggTab
leManager

INFO A list of the RolapStar fact table names
(aliases) and for each fact table, a list of
all of its associated aggregate tables.

mondrian.rolap.aggmatcher.AggTab
leManager

DEBUG A verbose output of all RolapStar fact
tables, their measures columns, and
dimension tables and columnns, along
with all of each fact table's aggregate
tables, columns and dimension tables.

mondrian.rolap.aggmatcher.Defaul
tDef

DEBUG For each candidate aggregate table, the
Matcher regular expressions for matching:
table name and the fact count, foreign
key, level and measure columns. Helpful
in finding out why an aggregate table was
not recognized.

mondrian.rolap.agg.AggregationMa
nager

DEBUG For each aggregate Sql query, if an
aggregate table can be used to fulfill the
query, which aggregate it was along with
bitKeys and column names.

mondrian.rolap.RolapUtil DEBUG Prints out all Sql statements and their
execution time. If one set the Mondrian
property,
mondrian.rolap.generate.formatt
ed.sql to true, then the Sql is pretty
printed (very nice).

mondrian.rolap.RolapConnection DEBUG Prints out each MDX query prior to its
execution. (No pretty printing, sigh.)

mondrian.rolap.RolapSchema DEBUG Prints out each Rolap Schema as it is
being loaded.

There are more classes with logging, but their logging is at a lower, more detailed level of more
use to code developers.

Log levels can be set in either a log4j.properties file or log4j.xml file. You have to make sure you
tell Mondrian which one to use. For the log4j.properties, entries might look like:

log4j.category.mondrian.rolap.RolapConnection=DEBUG
log4j.category.mondrian.rolap.RolapUtil=DEBUG

while for the log4.xml:

 - 108 -

<category name="mondrian.rolap.RolapConnection">
 <priority value="DEBUG"/>
</category>
<category name="mondrian.rolap.RolapUtil">
 <priority value="DEBUG"/>
</category>

Default aggregate table recognition rules

The default Mondrian rules for recognizing aggregate tables are specified by creating an instance
of the rule schema found in the file:
MONDRIAN_HOME/src/main/rolap/aggmatcher/DefaultRule sSchema.xml. The

instance of this schema that is built into the mondrian.jar after a build is in the same

directory, MONDRIAN_HOME/src/main/rolap/aggmatcher/DefaultRule s.xml.

There are six different default rules that are used to match and map a candidate aggregate table:
table name, ignore column, fact count column, foreign key column, level column and measure
column. All of these rules are defined by creating an instance of the DefaultRulesSchema.xml
grammar. The DefaultRulesSchema.xml instance, the DefaultRules.xml file mentioned above, that
by default is built as part of the mondrian.jar does not contain an ignore column rule. This
grammar has base/supporting classes that are common to the above rules. In XOM terms, these

are classes and super classes of the rule elements.

The first XOM class dealing with matching is the CaseMatcher class. This has an attribute
"charcase" that takes the legal values of

"ignore" (default)
"exact"
"upper"
"lower"

When the value of the attribute is "ignore", then the regular expression formed by an element
extending the CaseMatcher class will be case independent for both any parameters used to

instantiate the regular expression template as well as for the text in the post-instantiated regular
expression. On the other hand, when the "charcase" attribute take any of the other three values,
it is only the parameter values themselves that are "exact", unchanged, "lower", converted to
lower case, or "upper", converted to upper case.

The class NameMatcher extends the CaseMatcher class. This class has pre-template and
post-template attributes whose default values is the empty string. These attributes are
prepended/appended to a parameter to generate a regular expression. As an example, the
TableMatcher element extends NameMatcher class. The parameter in this case is the fact

table name and the regular expression would be:

pre-template-attribute${fact_table_name}post-template-attribute

For Mondrian, the builtin rule has the pre template value "agg_.+_" and the post template
attribute value is the default so the regular expression becomes:

agg_.+_${fact_table_name}

 - 109 -

Also, the NameMatcher has an attribute called basename which is optional. If set, then its
value must be a regular expression with a single capture group. A capture group is an regular
expression component surrounded by "(" and ")". As an example, "(.*)" is a capture group and if
this was the total regular expression, then it would match anything and the single capture would
match the same. On the other hand if the total regular expression was "RF_(.*)_TBL", then a
name such as "RF_SHIPPMENTS_TBL" would match the regular expression while the capture
group would be "SHIPPMENTS". Now, if the basename attribute is defined, then it is applied to

each fact table name allowing one to strip away information and get to the "base" name. This
might be needed because a DBA might prepend or append a tag to all of your fact table names
and the DBA might wish to have a different tag prepend or append to all of your aggregate table
names (RF_SHIPPMENTS_TBL as the fact table and RA_SHIPPMENTS_AGG_14 as an example
aggregate name (the DBA prepended the "RA_" and you appended the "_AGG_14")).

Both the FactCountMatch and ForeignKeyMatch elements also extend the NameMatcher
class. In these cases, the builtin Mondrian rule has no pre or post template attribute values, no
regular expression, The FactCountMatch takes no other parameter from the fact table (the

fact table does not have a fact count column) rather it takes a fact count attribute with default
value "fact_count", and this is used to create the regular expression. For the ForeignKeyMatch
matcher, its the fact table's foreign key that is used as the regular expression.

The ignore, asdf level and measure column matching elements have one or more Regex child
elements. These allow for specifying multiple possible matches (if any match, then its a match).
The IgnoreMap, LevelMap and MeasureMap elements extend the RegexMapper which

holds an array of Regex elements. The Regex element extends CaseMatcher It has two

attributes, space with default value '_' which says how space characters should be mapped,

and dot with default value '_' which says how '.' characters should be mapped. If a name were

the string "Unit Sales.Case" then (with the default values for the space and dot attributes and

with CaseMatcher mapping to lower case) this would become "unit_sales_case".

The IgnoreMap element has NO template parameter names. Each Regex value is simply a

regular expression. As an example (Mondrian by default does not include an IgnoreMap by

default), a regular expression that matches all aggregate table columns then end with
'_DO_NOT_USE' would be:

.*_DO_NOT_USE

One might want to use an IgnoreMap element to filter out aggregate columns if, for example,
the aggregate table is a materialized view, since with each "normal" column of such a
materialized view there is an associated support column used by the database which has no
significance to Mondrian. In the process of recognizing aggregate tables, Mondrian logs a
warning message for each column whose use can not be determined. Materialized views have so
many of these support columns that if, in fact, there was a column whose use was desired but
was not recognized (for instance, the column name is misspelt) all of the materialized view
column warning message mask the one warning message that one really needs to see.

The IgnoreMap regular expressions are applied before any of the other column matching

actions. If one sets the IgnoreMap regular expression to, for example,

.*

 - 110 -

then all columns are marked as "ignore" and there are no other columns left to match anything
else. One must be very careful when choosing IgnoreMap regular expressions not just for your
current columns but for columns that might be created in the future. Its best to document this
usage in your organization.

The following is what the element might look like in a DefaultRules.xml file:

 <IgnoreMap id="ixx" >
 <Regex id="physical" charcase="ignore">
 .*_DO_NOT_USE
 </Regex>
 </IgnoreMap>

The LevelMap element has the four template parameter names (hardcoded):

hierarchy_name
level_name
level_column_name
usage_prefix

These are names that can be used in creating template regular expressions. The builtin Mondrian
default rules for level matching defines three Regex child elements for the LevelMap element.

These define the template regular expressions:

${hierarchy_name}_${level_name}
${hierarchy_name}_${level_column_name}
${usage_prefix}${level_column_name}
${level_column_name}

Mondrian while attempting to match a candidate aggregate table against a particular fact table,
iterates through the fact table's cube's hierarchy name, level name and level colum names
looking for matches.

The MeasureMap element has the three template parameter names (hardcoded):

measure_name
measure_column_name
aggregate_name

which can appear in template regular expressions. The builtin Mondrian default rules for measure
matching defines three Regex child elements for the MeasureMap element. These are

${measure_name}
${measure_column_name}
${measure_column_name}_${aggregate_name}

and Mondrian attempts to match a candidate aggregate table's column names against these as it
iterators over a fact table's measures.

A grouping of FactCountMatch , ForeignKeyMatch , TableMatcher , LevelMap , and

MeasureMap make up a AggRule element, a rule set. Each AggRule has a tag attribute

 - 111 -

which is a unique identifier for the rule. There can be multiple AggRule elements in the outer

AggRules element. Each AggRule having its own tag attribute. When Mondrian runs, it

selects (via the mondrian.rolap.aggregates.rule.tag property) which rule set to use.

One last wrinkle, within a AggRule the FactCountMatch , ForeignKeyMatch ,

TableMatcher , LevelMap , and MeasureMap child elements can be either defined explicitly

within the AggRule element or by reference FactCountMatchRef , ForeignKeyMatchRef
, TableMatcherRef , LevelMapRef , and MeasureMapRef The references are defined as

child elements of the top level AggRules element. With references the same rule element can

be used by more than one AggRule (code reuse).

Below is an example of a default rule set with rather different matching rules.

<AggRules tag="your_mamas_dot_com">
 <AggRule tag="default" >
 <FactCountMatch id="fca" factCountName="FACT_TA BLE_COUNT"
 charcase="exact" />
 <ForeignKeyMatch id="fka" pretemplate="agg_" />
 <TableMatch id="ta" pretemplate="agg_" posttemp late="_.+"/>
 <LevelMap id="lxx" >
 <Regex id="logical" charcase="ignore" space=" _" dot="_">
 ${hierarchy_name}_${level_name}
 </Regex>
 <Regex id="mixed" charcase="ignore" >
 ${hierarchy_name}_${level_name}_${level_c olumn_name}
 </Regex>
 <Regex id="mixed" charcase="ignore" >
 ${hierarchy_name}_${level_column_name}
 </Regex>
 <Regex id="usage" charcase="exact" >
 ${usage_prefix}${level_column_name}
 </Regex>
 <Regex id="physical" charcase="exact" >
 ${level_column_name}_.+
 </Regex>
 </LevelMap>
 <MeasureMap id="mxx" >
 <Regex id="one" charcase="lower" >

${measure_name}(_${measure_column_name}(_${aggregat e_name})?)?
 </Regex>
 <Regex id="two" charcase="exact" >
 ${measure_column_name}(_${aggregate_name})?
 </Regex>
 </MeasureMap>
 </AggRule>
</AggRules>

First, all fact count columns must be called FACT_TABLE_COUNT exactly, no ignoring case.
Next, foreign key columns match the regular expression

agg_${foreign_key_name}

 - 112 -

that is, the fact table foreign key column name with "agg_" prepened such as agg_time_id .
The aggregate table names match the regular expression

agg_${fact_table_name}_.+

For the FoodMart sales_fact_1997 fact table, an aggregate could be named,

agg_sales_fact_1997_01
agg_sales_fact_1997_lost_time_id
agg_sales_fact_1997_top

If the hierarchy, level and level column names were:

hierarchy_name="Sales Location"
level_name="State"
level_column_name="state_location"
usage_prefix=null

then the following aggregate table column names would be recognizing as level column names:

SALES_LOCATION_STATE
Sales_Location_State_state_location
state_location_level.

If in the schema file the DimensionUsage for the hierarchy had a usagePrefix attribute,

usage_prefix="foo_"

then with the above level and level column names and usage_prefix the following aggregate
table column names would be recognizing as level column names:

SALES_LOCATION_STATE
Sales_Location_State_state_location
state_location_level.
foo_state_location.

In the case of matching measure columns, if the measure template parameters have the
following values:

measure_name="Unit Sales"
measure_column_name="m1"
aggregate_name="Avg"

then possible aggregate columns that could match are:

unit_sales_m1
unit_sales_m1_avg
m1
m1_avg

 - 113 -

The intent of the above example default rule set is not that they are necessarily realistic or
usable, rather, it just shows what is possible.

Snowflakes and the DimensionUsage level attribute

Mondrian supports dimensions with all of their levels lumped into a single table (with all the
duplication of data that that entails), but also snowflakes. A snowflake dimension is one where
the fact table joins to one table (generally the lowest) and that table then joins to a table
representing the next highest level, and so on until the top level's table is reached. For each level
there is a separate table.

As an example snowflake, below is a set of Time levels and four possible join element blocks,
relationships between the tables making up the Time dimension. (In a schema file, the levels
must appear after the joins.)

<Level name="Calendar Year" table="TimeYear" column ="YEAR_SID"
 nameColumn="YEAR_NAME" levelType="TimeYears" uniq ueMembers="true"/>
<Level name="Quarter" table="TimeQtr" column="QTR_S ID"
 nameColumn="QTR_NAME" levelType="TimeQuarters" un iqueMembers="true"/>
<Level name="Month" table="TimeMonth" column="MONTH _SID"
 nameColumn="MONTH_ONLY_NAME" levelType="TimeMonth s"
uniqueMembers="false"/>
<Level name="Day" table="TimeDay" column="DAY_SID"
nameColumn="DAY_NAME"
 levelType="TimeDays" uniqueMembers="true"/>

 <Join leftAlias="TimeYear" leftKey="YEAR_SID"
 rightAlias="TimeQtr" rightKey="YEAR_SID" >
 <Table name="RD_PERIOD_YEAR" alias="TimeYear" / >
 <Join leftAlias="TimeQtr" leftKey="QTR_SID"
 rightAlias="TimeMonth" rightKey="QTR_SID" >
 <Table name="RD_PERIOD_QTR" alias="TimeQtr" />
 <Join leftAlias="TimeMonth" leftKey="MONTH_ SID"
 rightAlias="TimeDay" rightKey="MONTH_SI D" >
 <Table name="RD_PERIOD_MONTH" alias="Ti meMonth" />
 <Table name="RD_PERIOD_DAY" alias="Time Day" />
 </Join>
 </Join>
 </Join>

 <Join leftAlias="TimeQtr" leftKey="YEAR_SID"
 rightAlias="TimeYear" rightKey="YEAR_SID" >
 <Join leftAlias="TimeMonth" leftKey="QTR_SID"
 rightAlias="TimeQtr" rightKey="QTR_SID" >
 <Join leftAlias="TimeDay" leftKey="MONTH_SI D"
 rightAlias="TimeMonth" rightKey="MONTH_ SID" >
 <Table name="RD_PERIOD_DAY" alias="Time Day" />
 <Table name="RD_PERIOD_MONTH" alias="Ti meMonth" />
 </Join>
 <Table name="RD_PERIOD_QTR" alias="TimeQtr" />
 </Join>
 <Table name="RD_PERIOD_YEAR" alias="TimeYear" / >
 </Join>

 - 114 -

 <Join leftAlias="TimeMonth" leftKey="MONTH_SID"
 rightAlias="TimeDay" rightKey="MONTH_SID" >
 <Join leftAlias="TimeQtr" leftKey="QTR_SID"
 rightAlias="TimeMonth" rightKey="QTR_SID" >
 <Join leftAlias="TimeYear" leftKey="YEAR_SI D"
 rightAlias="TimeQtr" rightKey="YEAR_SID " >
 <Table name="RD_PERIOD_YEAR" alias="Tim eYear" />
 <Table name="RD_PERIOD_QTR" alias="Time Qtr" />
 </Join>
 <Table name="RD_PERIOD_MONTH" alias="TimeMo nth" />
 </Join>
 <Table name="RD_PERIOD_DAY" alias="TimeDay" />
 </Join>

 <Join leftAlias="TimeDay" leftKey="MONTH_SID"
 rightAlias="TimeMonth" rightKey="MONTH_SID" >
 <Table name="RD_PERIOD_DAY" alias="TimeDay" />
 <Join leftAlias="TimeMonth" leftKey="QTR_SID"
 rightAlias="TimeQtr" rightKey="QTR_SID" >
 <Table name="RD_PERIOD_MONTH" alias="TimeMo nth" />
 <Join leftAlias="TimeQtr" leftKey="YEAR_SID "
 rightAlias="TimeYear" rightKey="YEAR_SI D" >
 <Table name="RD_PERIOD_QTR" alias="Time Qtr" />
 <Table name="RD_PERIOD_YEAR" alias="Tim eYear" />
 </Join>
 </Join>
 </Join>

 - 115 -

Viewed as trees these can be represented as follows:

 |

 | |
 Year --------------
 | |
 Quarter ---------
 | |
 Month Day

 |

 | |
 -------------- Year
 | |
 --------- Quarter
 | |
 Day Month

 |

 | |
 -------------- Day
 | |
 --------- Month
 | |
 Year Quarter

 |

 | |
 Day --------------
 | |
 Month ---------
 | |
 Quarter Year

It turns out that these join block are equivalent; what table joins to what other table using what
keys. In addition, they are all (now) treated the same by Mondrian. The last join block is the
canonical representation; left side components are levels of greater depth than right side
components, and components of greater depth are higher in the join tree than those of lower
depth:

 |

 | |
 Day --------------
 | |
 Month ---------
 | |
 Quarter Year

 - 116 -

Mondrian reorders these join blocks into the canonical form and uses that to build subtables in
the RolapStar.

In addition, if a cube had a DimensionUsage of this Time dimension with, for example, its

level attribute set to Month, then the above tree is pruned

 |

 | |
 Month ---------
 | |
 Quarter Year

and the pruned tree is what is used to create the subtables in the RolapStar. Of course, the fact
table must, in this case, have a MONTH_SID foreign key.

Note that the Level element's table attribute MUST use the table alias and NOT the table name.

 - 117 -

Appendix A – MDX Function List

These are the functions implemented in the current Mondrian release.

Name Description

$AggregateChildren Equivalent to
'Aggregate(<Hierarchy>.CurrentMember.Children); for
internal use.

Syntax

<Numeric Expression>
$AggregateChildren(<Hierarchy>)

$Cache Evaluates and returns its sole argument, applying
statement-level caching

Syntax

$Cache(<<Exp>>)

() Syntax

* Multiplies two numbers.

Syntax

<Numeric Expression> * <Numeric Expression>

* Returns the cross product of two sets.

Syntax

<Set> * <Set>
<Member> * <Set>
<Set> * <Member>
<Member> * <Member>

+ Adds two numbers.

Syntax

<Numeric Expression> + <Numeric Expression>

- Subtracts two numbers.

Syntax

<Numeric Expression> - <Numeric Expression>

- Returns the negative of a number.

Syntax

- <Numeric Expression>

 - 118 -

/ Divides two numbers.

Syntax

<Numeric Expression> / <Numeric Expression>

: Infix colon operator returns the set of members
between a given pair of members.

Syntax

<Member> : <Member>

< Returns whether an expression is less than another.

Syntax

<Numeric Expression> < <Numeric Expression>

< Returns whether an expression is less than another.

Syntax

<String> < <String>

<= Returns whether an expression is less than or equal to
another.

Syntax

<Numeric Expression> <= <Numeric Expression>

<= Returns whether an expression is less than or equal to
another.

Syntax

<String> <= <String>

<> Returns whether two expressions are not equal.

Syntax

<Numeric Expression> <> <Numeric Expression>

<> Returns whether two expressions are not equal.

Syntax

<String> <> <String>

= Returns whether two expressions are equal.

Syntax

<Numeric Expression> = <Numeric Expression>

 - 119 -

= Returns whether two expressions are equal.

Syntax

<String> = <String>

> Returns whether an expression is greater than another.

Syntax

<Numeric Expression> > <Numeric Expression>

> Returns whether an expression is greater than another.

Syntax

<String> > <String>

>= Returns whether an expression is greater than or equal
to another.

Syntax

<Numeric Expression> >= <Numeric Expression>

>= Returns whether an expression is greater than or equal
to another.

Syntax

<String> >= <String>

AND Returns the conjunction of two conditions.

Syntax

<Logical Expression> AND <Logical Expression>

AddCalculatedMembers Adds calculated members to a set.

Syntax

<Set> AddCalculatedMembers(<Set>)

Aggregate Returns a calculated value using the appropriate
aggregate function, based on the context of the query.

Syntax

<Numeric Expression> Aggregate(<Set>)
<Numeric Expression> Aggregate(<Set>, <Numeric
Expression>)

AllMembers Returns a set that contains all members, including
calculated members, of the specified dimension.

 - 120 -

Syntax

<Dimension>.AllMembers

AllMembers Returns a set that contains all members, including
calculated members, of the specified hierarchy.

Syntax

<Hierarchy>.AllMembers

AllMembers Returns a set that contains all members, including
calculated members, of the specified level.

Syntax

<Level>.AllMembers

Ancestor Returns the ancestor of a member at a specified level.

Syntax

<Member> Ancestor(<Member>, <Level>)
<Member> Ancestor(<Member>, <Numeric
Expression>)

Ascendants Returns the set of the ascendants of a specified
member.

Syntax

<Set> Ascendants(<Member>)

Avg Returns the average value of a numeric expression
evaluated over a set.

Syntax

<Numeric Expression> Avg(<Set>)
<Numeric Expression> Avg(<Set>, <Numeric
Expression>)

BottomCount Returns a specified number of items from the bottom of
a set, optionally ordering the set first.

Syntax

<Set> BottomCount(<Set>, <Numeric Expression>,
<Numeric Expression>)
<Set> BottomCount(<Set>, <Numeric Expression>)

BottomPercent Sorts a set and returns the bottom N elements whose
cumulative total is at least a specified percentage.

 - 121 -

Syntax

<Set> BottomPercent(<Set>, <Numeric Expression>,
<Numeric Expression>)

BottomSum Sorts a set and returns the bottom N elements whose
cumulative total is at least a specified value.

Syntax

<Set> BottomSum(<Set>, <Numeric Expression>,
<Numeric Expression>)

CalculatedChild Returns an existing calculated child member with name
<String> from the specified <Member>.

Syntax

<Member> <Member>.CalculatedChild(<String>)

Caption Returns the caption of a dimension.

Syntax

<Dimension>.Caption

Caption Returns the caption of a hierarchy.

Syntax

<Hierarchy>.Caption

Caption Returns the caption of a level.

Syntax

<Level>.Caption

Caption Returns the caption of a member.

Syntax

<Member>.Caption

Cast Converts values to another type

Syntax

Cast(<Expression> AS <Type>)

Children Returns the children of a member.

Syntax

<Member>.Children

 - 122 -

ClosingPeriod Returns the last descendant of a member at a level.

Syntax

<Member> ClosingPeriod()
<Member> ClosingPeriod(<Level>)
<Member> ClosingPeriod(<Level>, <Member>)
<Member> ClosingPeriod(<Member>)

CoalesceEmpty Coalesces an empty cell value to a different value. All of
the expressions must be of the same type (number or
string).

Syntax

CoalesceEmpty(<Value Expression>[, <Value
Expression>...])

Correlation Returns the correlation of two series evaluated over a
set.

Syntax

<Numeric Expression> Correlation(<Set>, <Numeric
Expression>)
<Numeric Expression> Correlation(<Set>, <Numeric
Expression>, <Numeric Expression>)

Count Returns the number of tuples in a set, empty cells
included unless the optional EXCLUDEEMPTY flag is
used.

Syntax

<Numeric Expression> Count(<Set>)
<Numeric Expression> Count(<Set>, <Symbol>)

Count Returns the number of tuples in a set including empty
cells.

Syntax

<Set>.Count

Cousin Returns the member with the same relative position
under <ancestor member> as the member specified.

Syntax

<Member> Cousin(<Member>, <Member>)

Covariance Returns the covariance of two series evaluated over a
set (biased).

 - 123 -

Syntax

<Numeric Expression> Covariance(<Set>, <Numeric
Expression>)
<Numeric Expression> Covariance(<Set>, <Numeric
Expression>, <Numeric Expression>)

CovarianceN Returns the covariance of two series evaluated over a
set (unbiased).

Syntax

<Numeric Expression> CovarianceN(<Set>, <Numeric
Expression>)
<Numeric Expression> CovarianceN(<Set>, <Numeric
Expression>, <Numeric Expression>)

Crossjoin Returns the cross product of two sets.

Syntax

<Set> Crossjoin(<Set>, <Set>)

CurrentDateMember Returns the member within the specified dimension
corresponding to the current date, in the format
specified by the format parameter.

Syntax

<Member> CurrentDateMember(<Hierarchy>,
<String>)

CurrentDateMember Returns the closest or exact member within the
specified dimension corresponding to the current date,
in the format specified by the format parameter.

Syntax

<Member> CurrentDateMember(<Hierarchy>,
<String>, <Symbol>)

CurrentDateString Returns the current date formatted as specified by the
format parameter.

Syntax

<String> CurrentDateString(<String>)

CurrentMember Returns the current member along a dimension during
an iteration.

Syntax

<Dimension>.CurrentMember

 - 124 -

CurrentMember Returns the current member along a hierarchy during an
iteration.

Syntax

<Hierarchy>.CurrentMember

DataMember Returns the system-generated data member that is
associated with a nonleaf member of a dimension.

Syntax

<Member>.DataMember

DefaultMember Returns the default member of a dimension.

Syntax

<Dimension>.DefaultMember

DefaultMember Returns the default member of a hierarchy.

Syntax

<Hierarchy>.DefaultMember

Descendants Returns the set of descendants of a member at a
specified level, optionally including or excluding
descendants in other levels.

Syntax

<Set> Descendants(<Member>)
<Set> Descendants(<Member>, <Level>)
<Set> Descendants(<Member>, <Level>, <Symbol>)
<Set> Descendants(<Member>, <Numeric
Expression>)
<Set> Descendants(<Member>, <Numeric
Expression>, <Symbol>)

Dimension Returns the dimension that contains a specified
hierarchy.

Syntax

<Dimension>.Dimension

Dimension Returns the dimension that contains a specified
hierarchy.

Syntax

<Hierarchy>.Dimension

Dimension Returns the dimension that contains a specified level.

 - 125 -

Syntax

<Level>.Dimension

Dimension Returns the dimension that contains a specified
member.

Syntax

<Member>.Dimension

Dimensions Returns the dimension whose zero-based position within
the cube is specified by a numeric expression.

Syntax

<Dimension> Dimensions(<Numeric Expression>)

Dimensions Returns the dimension whose name is specified by a
string.

Syntax

<Dimension> Dimensions(<String>)

Distinct Eliminates duplicate tuples from a set.

Syntax

<Set> Distinct(<Set>)

DrilldownLevel Drills down the members of a set, at a specified level, to
one level below. Alternatively, drills down on a specified
dimension in the set.

Syntax

<Set> DrilldownLevel(<Set>)
<Set> DrilldownLevel(<Set>, <Level>)

DrilldownMember Drills down the members in a set that are present in a
second specified set.

Syntax

<Set> DrilldownMember(<Set>, <Set>)
<Set> DrilldownMember(<Set>, <Set>, <Symbol>)

Except Finds the difference between two sets, optionally
retaining duplicates.

Syntax

<Set> Except(<Set>, <Set>)
<Set> Except(<Set>, <Set>, <Symbol>)

 - 126 -

Filter Returns the set resulting from filtering a set based on a
search condition.

Syntax

<Set> Filter(<Set>, <Logical Expression>)

FirstChild Returns the first child of a member.

Syntax

<Member>.FirstChild

FirstQ Returns the 1st quartile value of a numeric expression
evaluated over a set.

Syntax

<Numeric Expression> FirstQ(<Set>)
<Numeric Expression> FirstQ(<Set>, <Numeric
Expression>)

FirstSibling Returns the first child of the parent of a member.

Syntax

<Member>.FirstSibling

Format Formats a number to string.

Syntax

<String> Format(<Member>, <String>)
<String> Format(<Numeric Expression>, <String>)

Generate Applies a set to each member of another set and joins
the resulting sets by union.

Syntax

<Set> Generate(<Set>, <Set>)
<Set> Generate(<Set>, <Set>, <Symbol>)

Head Returns the first specified number of elements in a set.

Syntax

<Set> Head(<Set>)
<Set> Head(<Set>, <Numeric Expression>)

Hierarchize Orders the members of a set in a hierarchy.

Syntax

<Set> Hierarchize(<Set>)
<Set> Hierarchize(<Set>, <Symbol>)

 - 127 -

Hierarchy Returns a level's hierarchy.

Syntax

<Level>.Hierarchy

Hierarchy Returns a member's hierarchy.

Syntax

<Member>.Hierarchy

IIf Returns one of two numeric values determined by a
logical test.

Syntax

<Numeric Expression> IIf(<Logical Expression>,
<Numeric Expression>, <Numeric Expression>)

IIf Returns one of two string values determined by a logical
test.

Syntax

<String> IIf(<Logical Expression>, <String>,
<String>)

IS Returns whether an object is null

Syntax

<Member> IS <Null>
<Level> IS <Null>
<Hierarchy> IS <Null>
<Dimension> IS <Null>

IN Returns whether a member is contained in a set.

Syntax

<Member> IN <Set>

IS Returns whether two objects are the same

Syntax

<Member> IS <Member>
<Level> IS <Level>
<Hierarchy> IS <Hierarchy>
<Dimension> IS <Dimension>
<Tuple> IS <Tuple>

Intersect Returns the intersection of two input sets, optionally
retaining duplicates.

 - 128 -

Syntax

<Set> Intersect(<Set>, <Set>, <Symbol>)
<Set> Intersect(<Set>, <Set>)

IsEmpty Determines if an expression evaluates to the empty cell
value.

Syntax

<Logical Expression> IsEmpty(<String>)
<Logical Expression> IsEmpty(<Numeric Expression>)

Item Returns a member from the tuple specified in <Tuple>.
The member to be returned is specified by the zero-
based position of the member in the set in <Index>.

Syntax

<Member> <Tuple>.Item(<Numeric Expression>)

Item Returns a tuple from the set specified in <Set>. The
tuple to be returned is specified by the zero-based
position of the tuple in the set in <Index>.

Syntax

<Member> <Set>.Item(<Numeric Expression>)

Item Returns a tuple from the set specified in <Set>. The
tuple to be returned is specified by the member name
(or names) in <String>.

Syntax

<Set>.Item(<String> [, ...])

Lag Returns a member further along the specified member's
dimension.

Syntax

<Member> <Member>.Lag(<Numeric Expression>)

LastChild Returns the last child of a member.

Syntax

<Member>.LastChild

LastPeriods Returns a set of members prior to and including a
specified member.

Syntax

 - 129 -

<Set> LastPeriods(<Numeric Expression>)
<Set> LastPeriods(<Numeric Expression>, <Member>)

LastSibling Returns the last child of the parent of a member.

Syntax

<Member>.LastSibling

Lead Returns a member further along the specified member's
dimension.

Syntax

<Member> <Member>.Lead(<Numeric Expression>)

Level Returns a member's level.

Syntax

<Member>.Level

Levels Returns the level whose position in a hierarchy is
specified by a numeric expression.

Syntax

<Level> <Hierarchy>.Levels(<Numeric Expression>)

Levels Returns the level whose name is specified by a string
expression.

Syntax

<Level> Levels(<String>)

LinRegIntercept Calculates the linear regression of a set and returns the
value of b in the regression line y = ax + b.

Syntax

<Numeric Expression> LinRegIntercept(<Set>,
<Numeric Expression>)
<Numeric Expression> LinRegIntercept(<Set>,
<Numeric Expression>, <Numeric Expression>)

LinRegPoint Calculates the linear regression of a set and returns the
value of y in the regression line y = ax + b.

Syntax

<Numeric Expression> LinRegPoint(<Numeric
Expression>, <Set>, <Numeric Expression>)
<Numeric Expression> LinRegPoint(<Numeric
Expression>, <Set>, <Numeric Expression>, <Numeric
Expression>)

 - 130 -

LinRegR2 Calculates the linear regression of a set and returns R2
(the coefficient of determination).

Syntax

<Numeric Expression> LinRegR2(<Set>, <Numeric
Expression>)
<Numeric Expression> LinRegR2(<Set>, <Numeric
Expression>, <Numeric Expression>)

LinRegSlope Calculates the linear regression of a set and returns the
value of a in the regression line y = ax + b.

Syntax

<Numeric Expression> LinRegSlope(<Set>, <Numeric
Expression>)
<Numeric Expression> LinRegSlope(<Set>, <Numeric
Expression>, <Numeric Expression>)

LinRegVariance Calculates the linear regression of a set and returns the
variance associated with the regression line y = ax + b.

Syntax

<Numeric Expression> LinRegVariance(<Set>,
<Numeric Expression>)
<Numeric Expression> LinRegVariance(<Set>,
<Numeric Expression>, <Numeric Expression>)

Max Returns the maximum value of a numeric expression
evaluated over a set.

Syntax

<Numeric Expression> Max(<Set>)
<Numeric Expression> Max(<Set>, <Numeric
Expression>)

MATCHES Returns whether an expression matches a regular
expression.

Syntax

<String> MATCHES <String>

Median Returns the median value of a numeric expression
evaluated over a set.

Syntax

<Numeric Expression> Median(<Set>)
<Numeric Expression> Median(<Set>, <Numeric
Expression>)

Members Returns the set of members in a dimension.

 - 131 -

Syntax

<Dimension>.Members

Members Returns the set of members in a hierarchy.

Syntax

<Hierarchy>.Members

Members Returns the set of members in a level.

Syntax

<Level>.Members

Members Returns the member whose name is specified by a
string expression.

Syntax

<Member> Members(<String>)

Min Returns the minimum value of a numeric expression
evaluated over a set.

Syntax

<Numeric Expression> Min(<Set>)
<Numeric Expression> Min(<Set>, <Numeric
Expression>)

Mtd A shortcut function for the PeriodsToDate function that
specifies the level to be Month.

Syntax

<Set> Mtd()
<Set> Mtd(<Member>)

NOT Returns the negation of a condition.

Syntax

NOT <Logical Expression>

Name Returns the name of a dimension.

Syntax

<Dimension>.Name

NOT IN Returns whether a member is not contained in a set.

 - 132 -

Syntax

<Member> NOT IN <Set>

NOT MATCHES Returns whether an expression does not match a
regular expression.

Syntax

<String> NOT MATCHES <String>

Name Returns the name of a hierarchy.

Syntax

<Hierarchy>.Name

Name Returns the name of a level.

Syntax

<Level>.Name

Name Returns the name of a member.

Syntax

<Member>.Name

NextMember Returns the next member in the level that contains a
specified member.

Syntax

<Member>.NextMember

NonEmptyCrossJoin Returns the cross product of two sets, excluding empty
tuples and tuples without associated fact table data.

Syntax

<Set> NonEmptyCrossJoin(<Set>, <Set>)

OR Returns the disjunction of two conditions.

Syntax

<Logical Expression> OR <Logical Expression>

OpeningPeriod Returns the first descendant of a member at a level.

Syntax

<Member> OpeningPeriod()
<Member> OpeningPeriod(<Level>)

 - 133 -

<Member> OpeningPeriod(<Level>, <Member>)

Order Arranges members of a set, optionally preserving or
breaking the hierarchy.

Syntax

<Set> Order(<Set>, <Value>, <Symbol>)
<Set> Order(<Set>, <Value>)

Ordinal Returns the zero-based ordinal value associated with a
level.

Syntax

<Level>.Ordinal

ParallelPeriod Returns a member from a prior period in the same
relative position as a specified member.

Syntax

<Member> ParallelPeriod()
<Member> ParallelPeriod(<Level>)
<Member> ParallelPeriod(<Level>, <Numeric
Expression>)
<Member> ParallelPeriod(<Level>, <Numeric
Expression>, <Member>)

ParamRef Returns the current value of this parameter. If it is null,
returns the default value.

Syntax

<Value> ParamRef(<String>)

Parameter Returns default value of parameter.

Syntax

<String> Parameter(<String>, <Symbol>, <String>,
<String>)
<String> Parameter(<String>, <Symbol>, <String>)
<Numeric Expression> Parameter(<String>, <Symbol>,
<Numeric Expression>, <String>)
<Numeric Expression> Parameter(<String>, <Symbol>,
<Numeric Expression>)
<Member> Parameter(<String>, <Hierarchy>,
<Member>, <String>)
<Member> Parameter(<String>, <Hierarchy>,
<Member>)

Parent Returns the parent of a member.

Syntax

 - 134 -

<Member>.Parent

PeriodsToDate Returns a set of periods (members) from a specified
level starting with the first period and ending with a
specified member.

Syntax

<Set> PeriodsToDate()
<Set> PeriodsToDate(<Level>)
<Set> PeriodsToDate(<Level>, <Member>)

PrevMember Returns the previous member in the level that contains
a specified member.

Syntax

<Member>.PrevMember

Properties Returns the value of a member property.

Syntax

<Member>.Properties(<String Expression>)

Qtd A shortcut function for the PeriodsToDate function that
specifies the level to be Quarter.

Syntax

<Set> Qtd()
<Set> Qtd(<Member>)

Rank Returns the one-based rank of a tuple in a set.

Syntax

<Integer> Rank(<Tuple>, <Set>)
<Integer> Rank(<Tuple>, <Set>, <Numeric
Expression>)
<Integer> Rank(<Member>, <Set>)
<Integer> Rank(<Member>, <Set>, <Numeric
Expression>)

SetToStr Constructs a string from a set.

Syntax

<String> SetToStr(<Set>)

Siblings Returns the siblings of a specified member, including
the member itself.

Syntax

<Member>.Siblings

 - 135 -

Stddev Alias for Stdev.

Syntax

<Numeric Expression> Stddev(<Set>)
<Numeric Expression> Stddev(<Set>, <Numeric
Expression>)

StddevP Alias for StdevP.

Syntax

<Numeric Expression> StddevP(<Set>)
<Numeric Expression> StddevP(<Set>, <Numeric
Expression>)

Stdev Returns the standard deviation of a numeric expression
evaluated over a set (unbiased).

Syntax

<Numeric Expression> Stdev(<Set>)
<Numeric Expression> Stdev(<Set>, <Numeric
Expression>)

StdevP Returns the standard deviation of a numeric expression
evaluated over a set (biased).

Syntax

<Numeric Expression> StdevP(<Set>)
<Numeric Expression> StdevP(<Set>, <Numeric
Expression>)

StrToMember Returns a member from a unique name String in MDX
format.

Syntax

<Member> StrToMember(<String>)

StrToSet Constructs a set from a string expression.

Syntax

StrToSet(<String Expression>)

StrToTuple Constructs a tuple from a string.

Syntax

<Tuple> StrToTuple(<String>)

StripCalculatedMembers Removes calculated members from a set.

 - 136 -

Syntax

<Set> StripCalculatedMembers(<Set>)

Subset Returns a subset of elements from a set.

Syntax

<Set> Subset(<Set>, <Numeric Expression>)
<Set> Subset(<Set>, <Numeric Expression>,
<Numeric Expression>)

Sum Returns the sum of a numeric expression evaluated over
a set.

Syntax

<Numeric Expression> Sum(<Set>)
<Numeric Expression> Sum(<Set>, <Numeric
Expression>)

Tail Returns a subset from the end of a set.

Syntax

<Set> Tail(<Set>)
<Set> Tail(<Set>, <Numeric Expression>)

ThirdQ Returns the 3rd quartile value of a numeric expression
evaluated over a set.

Syntax

<Numeric Expression> ThirdQ(<Set>)
<Numeric Expression> ThirdQ(<Set>, <Numeric
Expression>)

ToggleDrillState Toggles the drill state of members. This function is a
combination of DrillupMember and DrilldownMember.

Syntax

<Set> ToggleDrillState(<Set>, <Set>)
<Set> ToggleDrillState(<Set>, <Set>, <Symbol>)

TopCount Returns a specified number of items from the top of a
set, optionally ordering the set first.

Syntax

<Set> TopCount(<Set>, <Numeric Expression>,
<Numeric Expression>)
<Set> TopCount(<Set>, <Numeric Expression>)

TopPercent Sorts a set and returns the top N elements whose

 - 137 -

cumulative total is at least a specified percentage.

Syntax

<Set> TopPercent(<Set>, <Numeric Expression>,
<Numeric Expression>)

TopSum Sorts a set and returns the top N elements whose
cumulative total is at least a specified value.

Syntax

<Set> TopSum(<Set>, <Numeric Expression>,
<Numeric Expression>)

TupleToStr Constructs a string from a tuple.

Syntax

<String> TupleToStr(<Tuple>)

Union Returns the union of two sets, optionally retaining
duplicates.

Syntax

<Set> Union(<Set>, <Set>)
<Set> Union(<Set>, <Set>, <Symbol>)

UniqueName Returns the unique name of a dimension.

Syntax

<Dimension>.UniqueName

UniqueName Returns the unique name of a hierarchy.

Syntax

<Hierarchy>.UniqueName

UniqueName Returns the unique name of a level.

Syntax

<Level>.UniqueName

UniqueName Returns the unique name of a member.

Syntax

<Member>.UniqueName

ValidMeasure Returns a valid measure in a virtual cube by forcing
inapplicable dimensions to their top level.

 - 138 -

Syntax

<Numeric Expression> ValidMeasure(<Tuple>)

Value Returns the value of a measure.

Syntax

<Member>.Value

Var Returns the variance of a numeric expression evaluated
over a set (unbiased).

Syntax

<Numeric Expression> Var(<Set>)
<Numeric Expression> Var(<Set>, <Numeric
Expression>)

VarP Returns the variance of a numeric expression evaluated
over a set (biased).

Syntax

<Numeric Expression> VarP(<Set>)
<Numeric Expression> VarP(<Set>, <Numeric
Expression>)

Variance Alias for Var.

Syntax

<Numeric Expression> Variance(<Set>)
<Numeric Expression> Variance(<Set>, <Numeric
Expression>)

VarianceP Alias for VarP.

Syntax

<Numeric Expression> VarianceP(<Set>)
<Numeric Expression> VarianceP(<Set>, <Numeric
Expression>)

VisualTotals Dynamically totals child members specified in a set
using a pattern for the total label in the result set.

Syntax

<Set> VisualTotals(<Set>)
<Set> VisualTotals(<Set>, <String>)

Wtd A shortcut function for the PeriodsToDate function that
specifies the level to be Week.

 - 139 -

Syntax

<Set> Wtd()
<Set> Wtd(<Member>)

XOR Returns whether two conditions are mutually exclusive.

Syntax

<Logical Expression> XOR <Logical Expression>

Ytd A shortcut function for the PeriodsToDate function that
specifies the level to be Year.

Syntax

<Set> Ytd()
<Set> Ytd(<Member>)

_CaseMatch Evaluates various expressions, and returns the
corresponding expression for the first which matches a
particular value.

Syntax

Case <Expression> When <Expression> Then
<Expression> [...] [Else <Expression>] End

_CaseTest Evaluates various conditions, and returns the
corresponding expression for the first which evaluates
to true.

Syntax

Case When <Logical Expression> Then <Expression>
[...] [Else <Expression>] End

{} Brace operator constructs a set.

Syntax

{<Member> [, <Member>...]}

|| Concatenates two strings.

Syntax

<String> || <String>

