MCU 8051 IDE handbook

Martin OSmera <martin.osmera@moravia-microsystems.com >

October 12, 2014

I would like to thank to the following people for their support during the
project development:

Andre Cunha (Brazil) for review of this document.

Yuanhui Zhang (China) for bug reports and help with debugging.
Kara Blackowiak (USA) for certain code reviews.

Marek Nozka (Moravia, CZ, EU) for help with debugging.
Kostya V. Ivanov (Russia) for bug fixes in the simulator engine.

Shakthi Kannan (India) for adding this software to the FEL project
and for a few patches.

Trevor Spiteri for help with debugging (patches) the HD44780 sim-
ulator.

Miroslav Hradilek (EU) for bug reports and suggestions
Fabricio Alcalde (Argentina) for suggestions and bug reports.

Francisco Albani (Argentina) for suggestions and a few bug reports.

Contents

Preface

Goals of the project
Requirements
Intended Audienceo

1 Brief introduction

1.1 Main components of MCU 8051 IDE
1.2 What is MCS-51
1.3 What is the Assembly language
2 Quick start
2.1 Demonstration project
2.2 Your first project in MCU 8051 IDE
3 Detailed introduction to GUI
3.1 Source code editor
3.1.1 Syntax highlight and validation
3.1.2 Spell checking
3.1.3 Auto-completion
3.1.4 Editor command line
3.2 Bottom panel o
3.2.1 Main panel of the MCU simulator
322 Cwariables
3.2.3 Graph showing voltage levels.
3.24 Messages panelo
325 Notes
326 Calculator
327 Findinfiles oo
3.2.8 Terminal emulator
3.3 Leftpanel
3.3.1 List of opened files

CONTENTS

3.3.2 List of project files
333 SFRwatches
3.3.4 File system browser
3.4 Right panel o
3.4.1 List of bookmarks
3.4.2 List of breakpoints
3.4.3 Instruction details
3.4.4 Data register watches
3.4.5 Subprograms call monitor
3.4.6 List of symbolso
3.4.7 HW plug-ins manager
3.5 Othertools
351 SFRmap
3.5.2 Map of bit addressable area
3.5.3 Stack monitor oL
3.5.4 Symbol viewer
355 ASCIIchart
3.5.6 8051 Instruction Table
3.5.7 8-segment editor oL
3.5.8 Stopwatch
3.5.9 Scribble notepad oL
3.5.10 Base converter
3.5.11 RS-232 debugger
3.5.12 Hexadecimal editors
3.5.13 Hibernation of simulated program
3.5.14 Interrupt monmitor
3.5.15 Conversions between *.hex, *.bin and *.adf files
3.5.16 Normalization of source code indentation
3.5.17 Change letter case
3.5.18 User defined commands
3.5.19 Clean-up project folder
3.5.20 File statistic oL
3.6 Configuration dialogues

Build-in macro-assembler

4.1 Statements.
4.2 Symbols
4.3 Constants
4.4 EXpPressions e e e e
4.5 The instruction set processing
4.6 Assembler directives

CONTENTS 5
4.7 Assembler Controls 45
4.8 Predefined Symbolso 47
4.9 Segment type 49
4.10 Conditional Assembly 51
4.11 Macro Processing oo 52
4.12 Reserved keywords 26
4.13 Compatibility with ASEM-51 o7
4.14 List File Format 58
4.15 Specification of Intel®8 HEX Format 60

5 Disassembler 61

6 MCU simulator 63
6.1 Short introduction L 63
6.2 Modes of simulation 63
6.3 Waring conditionso 64
6.4 Limitations 64
6.5 Virtual hardware 65

6.5.1 DS1620 temperature sensor 65
6.5.2 File interface 65
6.5.3 LED Panel 66
6.5.4 Single LED Display 66
6.5.5 Multiplexed LED Display 66
6.5.6 LED Matrix 67
6.5.7 Matrix Keypad 67
6.5.8 Simple Keypad 68
6.5.9 LCD display controlled by HD44780 68

7 Writing hardware tool control plug-ins 69
7.1 Foreword 69
7.2 How to write your own plug-in 70
7.3 Using MCU 8051 IDE APT 71
74 Abasicexample. o 72
7.5 Random remarks 73

8 Command Line Interface 75

9 Translating the IDE into different languages s

A License

79

CONTENTS

Regression testing

B.1 Foreword
B.2 More about the implementation

Project web page and other media

C.1 Official project web page
C.2 Othermedia
C.3 GIT repository

8051 Instructions in numerical Order
8051 Instructions in alphabetical order

List of supported micro-controllers

FO1 Imtel®
FO02 Atmel®

Change log

81

.......... 81
.......... 81

83

.......... 83
.......... 84
.......... 84

85

91

97

.......... 97
.......... 97

99

Preface

Goals of the project

MCU 8051 IDE is an integrated development environment for microcon-
trollers based on MCS-51 intended for Assembly language and C language.
This IDE is currently available on GNU /Linux and Microsoft ® Windows®
(since version 1.3.6). This program was originally intended for education
purposes, but now the area of potential usage is surely significantly wider.
This program was created to fill a gap in the open source software of this
kind. User interface, source codes, documentation, web pages, etc., are writ-
ten in English in order to make this software available to as many user as
possible, but there is support for internationalization using i18n since ver-
sion 1.3.10. This documentation is written in TEX. It is very important
to note that this software was not developed for any company, person or
something similar and it is completely noncommercial, open source software
distributed under GNU GPLv2 license intended for a group of people with
common interest, in this case 8051.

MCU 8051 IDE should offer:

@ A transparent view on a simulated program for 8051;
@ Easy source code editing even for an user with small knowledge of the
assembly language;

@ User friendly advanced IDE for MCS-51.

List of the most important parts of MCU 8051 IDE:

1= Source code editor;

1 Optimization capable macro-assembler;
i Advanced MCU simulator;

1= Hexadecimal editor;

http://gnu.cz/article/30/pdf/gpl-cz.pdf

8 CONTENTS

1 Interface for hardware tool control plug-ins;
1 Scientific calculator and special calculator optimized for 8051.

Requirements

Hardware requirements are not defined. This program should run without
problems on all POSIX systems (like GNU/Linux, etc.), where all of the
software dependencies were satisfied. The IDE is officially distributed as a
source code package (primary programming language is TCL), RPM package
(currently available in official RHEL repositories), DEB package (currently
available in official Debian repositories) and ebuild for Gentoo Linux (cur-
rently NOT available in the portage tree).

Package [Min. version [Download location
Required packages: (The IDE will not run without these packages)
tel 8.5 http://www.tcl.tk/software/tcltk/downloadnow85.html
tk 8.5 http://www.tcl.tk/software/tcltk/downloadnow85.html
bwidget 1.8 http://sourceforge.net/projects/tcllib
itcl 3.4 http://sourceforge.net/projects/incrtcl
tdom 0.8 http://www.tdom.org
tkimg 1.3 http://sourceforge.net/projects/tkimg
tcllib 1.6 http://sourceforge.net/projects/tcllib
Optional packages: (Functionality might be unnecessarily limited without these packages)
Telx 8.4 http://tclx.sourceforge.net
(Signal handling (signals like SIGINT)
cmake 2.6 ‘ http://www.cmake.org/HTML/Download.html
(If you prefer this way of installation: *‘./configure && make && make install’’)
rxvt-unicode 8.3 [http://software.schmorp.de
(If you want terminal emulator)
asem-51 1.3 [http://plit.de/asem-51/download.htm
(If you want to use a really good assembler :))
sdcc 2.9 [http://sdcc.sourceforge.net/
(If you want to used C language compiler)
doxygen 1.3 [www.doxygen.org/
(If you want to use doxygen directly from the IDE)
indent 1.2 [http://www.gnu.org/software/indent/
(If you want to use auto-indent function for C language)
hunspell 1.2 [http://hunspell.sourceforge.net
(If you want to have spell checker function available)
bash 4.0 [http://tiswww.case.edu/php/chet/bash/bashtop.html
(If you want to have spell checker function available)
gawk 3.1 [http://www.gnu.org/software/gawk/
(If you want to have spell checker function available)

Table 1: Software requirements

http://www.tcl.tk/software/tcltk/downloadnow85.html
http://www.tcl.tk/software/tcltk/downloadnow85.html
http://sourceforge.net/projects/tcllib
http://sourceforge.net/projects/incrtcl
http://www.tdom.org
http://sourceforge.net/projects/tkimg
http://sourceforge.net/projects/tcllib
http://tclx.sourceforge.net
http://www.cmake.org/HTML/Download.html
http://software.schmorp.de
http://plit.de/asem-51/download.htm
http://sdcc.sourceforge.net/
www.doxygen.org/
http://www.gnu.org/software/indent/
http://hunspell.sourceforge.net
http://tiswww.case.edu/php/chet/bash/bashtop.html
http://www.gnu.org/software/gawk/

CONTENTS 9

Intended Audience

This manual is intended for any individual, regardless of his or her experience
with assembler, C language, MCU 8051 IDE or Linux, but it is assumed here
that the reader is familiar with basic concepts of assembly language program-
ming and with 8051 processor architecture. Advanced users are not likely to
read this manual, but all suggestions on documentation will be considered.
If you would like to contribute to this project or the documentation, please
consult the project web page.
Thanks for your cooperation which helps to make this software better.

10

CONTENTS

11

Chapter 1

Brief introduction

This chapter will provide you with a brief introduction about the main com-
ponents that are part of MCU 8051 IDE. The purpose of this chapter is to
contextualize you on the sofware, informing about the parts that composes
it. The next chapter will cover rapidly the Graphical User Interface, which
will be described in further details on chapter.

1.1 Main components of MCU 8051 IDE

Editor The code editor is featured with syntax highlighting and validation,
auto-completion and spell checking for comments !, as well as a command
line that speeds up the access to various editor options. It also provides
a panel showing line numbers, bookmarks, breakpoints and warnings from
syntax validator. Editor is capable to export the source code within it as
XHTML and KTEX and contains a number of useful tools like automatic
indentation, searching and replacement of expressions, copy to clipboard,
paste from clipboard, among others.

Assembler The assembler is one of the integral parts of MCU 8051 IDE. It
is a macro assembler with support for dozens of directives and capable of per-
forming peephole optimizations. Support for peephole optimizations means
that the assembler can attempt to optimize the resulting code for higher exe-
cution speed and lower size without tempering with its very functionality. It
is important to note that automatic peephole optimization can sometimes be
harmful and so it is disabled by default. A macro assembler is a software that
allows the user to define a macro instruction, which consists of a sequence

!Spell checking for comments is available only if you have installed the Hunspell pro-
gram. This feature is currently not available on MS® Windows®OS.

12 CHAPTER 1. BRIEF INTRODUCTION

of basic instructions, and use it later instead of repeatedly copying and past-
ing the set of instructions over and over along the source code. Assembler
behavior can be configured either globally, using the proper configuration di-
alog, or locally in source code, by means of assembler directives and control
sequences (e.g. $TITLE(’Some title to show in the code listing’)).
The assembler is capable of generating four kinds of output code:

1= Object code (machine code) as an hexadecimal file, with . hex extension
and in Intel® 8 HEX format;

= Object code (machine code) as a binary file, with .bin extension and
in format of raw binary data;
iz Code listing, in .1st extension;

i Code for integrated MCU simulator, in .adf extension.

Simulator The simulator is a software component intended for the simu-
lation of the chosen microcontroller in a virtual environment. It allows user
to monitor precisely what is happening in the MCU in an exact moment in
time, as well as to modify its components, for instance by altering the value
of a register, canceling an interrupt or forcing a subprogram to return. In
that way it might be possible to ferret out certain flaws in the program being
debugged, which would be hard or nearly impossible to find and/or fix in
other ways. Even though it is better to have ICD (In-Circuit Debugger) or
ICE (In-Circuit Emulator) at hand, MCU 8051 IDE in current version does
not support neither of them really sorry. MCU simulator implemented in
this IDE supports dozens of microcontrollers and most of them are treated
in slightly different way allowing to take into account most of the nuances be-
tween the supported MCUs. User can adjust simulator behavior to fit his or
her needs by modifying clock frequency, size of connected external code, data
memory and others, or for instance by disabling or enabling certain warnings,
which pops up when the simulated program do something “strange”, like some
kind of invalid access into memory or stack overflow or underflow. Besides
that, it is possible for the user to modify all registers which the MCU deals
with, including those which are not accessible by the running program, like
the Program Counter. User have always an overview of all possible, pending
and active interrupts and can tamper with them at any time. The simu-
lator also allows for altering code memory and all kinds of data memories.
The program being simulated can be at any time "hibernated" into a file,
preferably with .m5ihib extension, and resumed later from this same file.
Such a file contains the entire state of the simulator at the point in which
the program was hibernated.

1.1. MAIN COMPONENTS OF MCU 8051 IDE 13

Project management It is a functionality that allows the IDE to remem-
ber certain set of source code files along with a set of configuration param-
eters. Projects are stored in XML (eXtensible Markup Language) files with
extension .mcu8051ide. These files are human readable and their precise
formatting is described in their inline DTD (Document Type Declaration).
Their encoding is UTF-8 (Unicode Transformation) and as EOL (End Of
Line) character they use LF (Line Feed). The reason for that is to make it
possible for the user to implement his or her own tools for manipulating with
them.

Scientific calculator MCU 8051 IDE scientific calculator is implemented
as a simple scientific calculator capable of computation in four number sys-
tems: hexadecimal, decimal, octal and binary, and with three angle units:
radians, degrees and grad. Integral part of the calculator is also a simple tool
intended solely for computing preset values for MCU timers.

Special calculator The experience in MCU programming shows that it
is very useful to have some tools at hand, capable of performing recurrent
boring calculations that spend time to be done by hand. MCU 8051 IDE
special calculator is intended for performing certain simple specialized calcu-
lations related to 8051. For instance, this calculator is capable of generating
assembly language code implementing a wait loop with specified parameters.

Hexadecimal editor This utility is used here for watching and modifying
large blocks of raw data in various memory types of the simulated MCU
(Code, IDATA, XDATA, EEPROM, etc.). There is also hexadecimal editor
intended for editing Intel® HEX 8 files. Other hexadecimal editors are
specially designed to fit specific needs of the given purpose; for example,
there is an hexadecimal editor for viewing and editing code memory, which
displays the current position of the program counter in the machine code of
the simulated program.

Disassembler This tool can translate once assembled code back to source
code. It is important to note that it is somewhat improbable that the result-
ing source code will look "reasonable" It is due to DB and DW and not fixed
instruction word length on 8051. Nevertheless, such a generated source code
must posses exactly the same functionality when it gets assembled again.
Disassembler implemented in this IDE is frankly speaking only a little more
that just a toy. If you want a really capable disassembler, maybe you should
try some tool like D52 http://www.8052.com/users/disasm/.

http://www.8052.com/users/disasm/

14 CHAPTER 1. BRIEF INTRODUCTION

Notepad In this IDE, it is a simple rich text editor for writing user notes
of whatever kind. Originally, it was intended for writing a list of things which
remain to be done in your project.

Command Line Interface (CLI) It is a tool that allows the use of some
IDE functions without entering it’s GUI. You can get list of available options
by typing mcu8051ide -h or mcu8051lide -help to your terminal emula-
tor. You can, for example, use just the assembler of the IDE or convert an
Intel® HEX 8 file to a raw binary file.

1.2 What is MCS-51

The Intel MCS-51 is a Harvard architecture, single

chip microcontroller series which was developed by
Intel in 1980 for use in embedded systems. Today
there is a vast range of enhanced 8051-compatible

devices manufactured by a number of independent 3 | o= |E
manufacturers. They have 8-bit ALU, accumulator
and 8-bit Registers (hence they are an 8-bit mi-
crocontrollers), they have 16-bit address bus, 8-bit
data bus, boolean processing engine which allows = [=
bit-level boolean logic operations to be carried out -

directly and efficiently on select internal registers Figure 1.1: i8051 micro-
and select RAM locations, etc. architecture

1.3 What is the Assembly lan-
guage

An assembly language is a low-level programming language for computers,
microprocessors, microcontrollers and other integrated circuits. It imple-
ments a symbolic representation of the binary machine codes and other con-
stants needed to program a given CPU architecture. Processors based on
MSC-51 have compatible instruction set, similar registers and many other
things are generally very similar among them.

Here is an example of how a piece of 8051 assembly code looks like:

Code 1 An example piece of code written in 8051 assembly language

main:

test=2
mov RO, #2bh
; Configure EEPROM
orl EECON, #38h
inc RO
XOMI:
anl EECON, #(OFFh - 020h)

movx ORO, A

15

Chapter 2

Quick start

2.1 Demonstration project

The aim of the demonstration project is to provide an easy way to explore
the IDE without reading long and boring documents like this one. :) The
demonstration project can be opened from the welcome dialog (“Main Menu”
— “Help” — “@ Welcome dialog’ — “Open demonstration project”.)
Demonstration project should introduce new user into usage of the most
common functions of the IDE like assembling the code, running simulator

and so on. Demonstration project cannot be modified by the user in order
to make it “less volatile”.

File Edit View Project Simulator VirtualMCU Virual HW Tools Utlities Configure

i EaE oD lRERKsEwaa

>Demo project |

Help

2o 8w

“ @ B |6 |® | [} [Fdemooasm |[Zldemot.asm | [Zldemo2:asm_|[Z)demo3

) [Eldemos.asm _|[Fldemo_c 0.0 |[Tlledmatixe |[heypad cish|@ = |# 1& 1@ = | lm 1w |
inple code = .
Project Files: H S|@d|lmeas a
| e " d F6 to (st. FF Register watche 06 |~
i | 2 0OFF Sor -
demod.asm h oFF -
demol.asm 00 07
Genes-oon "o q| = e
demos..asm @RO %0 10 o0
demo ¢ B.c RO, #87Fh, main AB 1D 0
Tednmatrix.c RO, #0d B8 1D o8
keypad_display.c main 68
mleddisplay.asm .28 Some]
.21 Another b]
26 DATA PTR o8
(try Alt+PgUp/Alt+PgDown) OF COUNTER [
° =
|| adar Regiiername
I [- S — e L Jwax

i Simulator | = Cvarlables | 7I0Porls | @yMessages v Noles | Calculator |@lTerminal || Findinfies | Hide |

B WELCOME TO MCU 8651 IDE
"what does it consist of: Basic key shortcuts:
> LEFT: - Initialize simulator
4) 1. List of opened files F7 - Step program
» 2. List of project files F6 - Animate program
v 3. Filesystem browser F4 - Reset simulator

4. SFR watches CTRL+F7 - Step back

RIGHT: W Thank you for trying MCU 8051 IDE
1 Rankmacke
Eer= -

ATB9S8253

Figure 2.1: MCU 8051 IDE with the demonstration project opened within it

16 CHAPTER 2. QUICK START

2.2 Your first project in MCU 8051 IDE

At first let me explain what the MCU 8051 IDE’s
project really is. It is a set of some files in

Create a new project.

some dlrectory, let’S Call th]S d]rectory the \ All entries are required. Gther options > edit project.
project directory. And this along with the Gepj‘dm
file with extension .mcu8051ide forms the Wy FrstProct

project. The file with .mcu8051ide exten- I .
sion defines what source code files belongs -
to the project and contains additional infor-

Processor

. . . . Type: ATE952051 - | 42 selectmCU |
mation about the project, like who is the * :

. . External RAM (XDATA) External ROM/FLASH [XCODE)
project author or for what exact MCU is — Clenanie
the project intended. 3 S

To create you project you have to spec- Vo % Cancel

ify the project directory and the MCU type
for which you will develop your code. This
is done in project creation dialog. This di-
alog can be accessed from main menu “Main Menu” — “Project” — “ New”.
After this step you can specify some additional information about the project
in project editing dialog.

Once you have created a new project you can begin to develop you code
from your chosen processor. When you want to save your code press Ctrl+S,
Ctrl+N creates a new file and an existing file can be opened by Ctrl+0O. Each
opened file can be added or removed to/from your current project. Ctrl+B
creates or deletes bookmark and Ctrl-+Shift+B creates or deletes breakpoint.
Project files, the files which are parts of the project, are opened each time
you open the project. You can have more than one project opened at the
time.

Simulator can be started and shut down by pressing F2 key and assembler
or compiler is run when F11 is pressed. Output from assembler or compiler is
displayed on the bottom panel in tab “Messages”. And main MCU simulator
panel is also available on the bottom panel in tab “Simulator”.

On the left side you can find list of currently opened source code files
and list of project files. And on the right side probably most useful tool
at the beginning might be “Instruction details”, this tool displays help for
instruction in the code editor on line with cursor. In the right panel you can
find for example also list of bookmarks and breakpoints.

Figure 2.2: Project creation dialog

17

Chapter 3

Detailed introduction to GUI

3.1 Source code editor

3.1.1 Syntax highlight and validation

The editor is equipped with an implementation of a syn-

tax highlighting algorithm based on simplified syntax

analysis. And that enables a limited on-line syntax val- =
idation. That means that as the user writes down the
code, editor tries to check it for syntactical correctness.
Syntax validator marks “strange looking” lines with ex-
clamation mark and tries to underline exact point of
potential syntax errors. This feature can be disabled
as well as syntax highlighting can be disabled. By disabling these features
you can make the editor work faster, but it would probably mean only a
unnecessary limitation. There are three levels of syntax validation:

Figure 3.1: Syn-
tax validation configu-
ration button

e (: Disabled
e 1: Fast basic validation
e 2: Slow advanced validation

Syntax validation configuration button react to left and right click with the
mouse pointer. Right button click decreases the level of validation and the
left button click increases it.

3.1.2 Spell checking

18 CHAPTER 3. DETAILED INTRODUCTION TO GUI

rtesn it tonars There is also configurable spell checking function avail-

. :

oo e able. It underlines words which are marked by Hun-
S LI B spell! as incorrectly spelled. This function applies to

comments in the code or the entire code in case that
Figure 3.2: Spell the syntax highlight function has been disabled. User
checker configuration can choose from any of Hunspell or Myspell dictionar-
button ies installed on his or her system. This feature can

also be turned off. It makes sense that this function is
completely dependent on the Hunspell program, if it is not installed, spell
checking won’t work here.

3.1.3 Auto-completion

Pop-up based auto-completion is func-

tion which should make it easier to | . cone umser:

use long names for labels, macros, vari- 2 movx RO, A

ables, functions, constants, etc. This o g :ZAh o —
function is interconnected with syntax e e |5

editor’s analyzer used for syntax high- | il nrenent %Eii’ I
light and validation and for the table of e e

symbols in the right panel. So it main-
tains an overview of all symbols defined Figure 3.3: Syntax highlight, syntax
in your source code file and then when validation and the pop-up based auto-
. . completion all in action

you write just a few characters which

a symbol starts with, this function will

pop-up window offering you all defined symbols beginning with that letters.
Note that this feature can be disabled in editor configuration dialog and note
also that besides symbols it offers also list of assembly language instruction
mnemonics and assembler directives.

3.1.4 Editor command line

Editor is featured with a command line, which can be invoked by pressing
F10 key by default, and dismissed by pressing Esc. The command line ap-
pears below the editor above its status bar. From the command line you
can perform variety of operations like conversions between various numerical
bases, run simulator, insert current date and many more. In the command
line it is sufficient to write just a few characters which the requested com-
mand starts with and which are sufficient to uniquely identify the command
and press enter. You can see help for each command by running command

'Hunspell is a spell checker and morphological analyzer. See http://hunspell.
sourceforge.net for details.

http://hunspell.sourceforge.net
http://hunspell.sourceforge.net

3.1. SOURCE CODE EDITOR 19

help list. Command line is featured with its own color highlight, history
and auto-completion.

Command Arguments Description

d2h <decimal number> Convert decimal number into hexadecimal
d2o <decimal number> Convert decimal number into octal

d2b <decimal number> Convert decimal number into binary

h2d <hexadecimal number> Convert hexadecimal number into decimal
h2o0 <hexadecimal number> Convert hexadecimal number into octal
h2b <hexadecimal number> Convert hexadecimal number into binary
02h <octal number> Convert octal number into hexadecimal
02d <octal number> Convert octal number into decimal

02b <octal number> Convert octal number into binary

b2h <binary number> Convert binary number into hexadecimal
b2d <binary number> Convert binary number into decimal

b2o <binary number> Convert binary number into octal
animate Animate simulated program

assemble Run assembler

auto-indent

Automatically indent the edited code

bookmark Create or delete bookmark on the current line
breakpoint Create or delete breakpoint on the current line
capitalize Capitalize selected text

clear Clear history

comment Comment selection

copy Copy selection

custom <command number> Run user command

cut Cut selection

date <date format> Insert current time and/or date

exit Leave command line

exit-program
find

<string>

Exit the IDE
Find a string

goto <line number> Go to the specified line

help <command name> Display help for the specified command
char <character code> Insert a character

indent Indent selection

kill-line Delete current line

open <file name> Open the specified file

paste Paste text from clipboard

redo Take back last undo

reload Reload current document

replace <string> <replacement> Replace a string with another string
run Run simulator in animation mode
save Save the current file

set-icon-border
set-line-numbers

Show/Hide icon border
Show/Hide line numbers

sim Engage/Disengage simulator

step Step simulated program

tolower Convert selected text to lowercase

toupper Convert selected text to uppercase
uncomment Comment current line

undo Undo the last text editing operation
unindent Decrease indentation level of the current line
hibernate [<target file>] Hibernate simulated program

resume [<source file>] Resume hibernated program

switch-mcu
set-xcode
set-xdata

<MCU name>
<size of XCODE mem.>
<size of XDATA mem.>

Switch current MCU simulation mode to another MCU
Set size external data memory for simulated MCU
Set size external program memory for simulated MCU

Table 3.1: Available commands

20 CHAPTER 3. DETAILED INTRODUCTION TO GUI

3.2 Bottom panel

3.2.1 Main panel of the MCU simulator

This panel is the main part of the simulator user interface. It shows all MCU
registers along with content of internal data memory. And contains small
toolbar with 6 buttons: “# Start”/“@ Shutdown”, “Z Reset”, “& Step back”,
“% Step”, “% Step over”, “P Animate” and “® Run”. All visible registers can be
modified from here and most SFR registers are represented by enumeration of
bits, where each particular bit can be modified separately, green color means
logical one and red means zero. Each bit has its own tooltip help with short
description of its purpose and status bar tip with bit address and bit name.

Figure 3.4: Main panel of the simulator

x8 = @| :|‘ « $ 5 bW TMERSIEI—— T E —— .
0088 60 00 08 BO 0O 0B 00 - THITLITHOTLO T 70 TconNTMoD| po:[11111111|[FF| oPTR: [ee] [ee] [s: [e7

00 00 00 00 00 60 0O 08 Hex DEc BIN oct cHar | [ee|[ee|[os|[0ae [1540 | [11] (08| | pi:[oriziara|7F| clock: (12688 | | SEUF R: (€8

©0 00 60 60 B0 80 0B 08 A: 5 2 -

o0 00 00 00 00 08 00 00 A:(16((16 |00010000)20 1::;’; TGF11 ;:: L:L: e \;; ;-10 NIAE':: - p2: /11111111 FF] o1l

00 00 00 00 00 60 60 pp | |- |°9/|0 [80000000]8 : P3: (11111111 FF| PC: > Hex[onan| DEC(74

00 00 00 B0 00 B0 B0 08 | pow: c AC FO RSI RS0 Ov-p ~INTERRUPTS B

00 00 B0 00 B0 00 80 80 | .o oo oo py Ry p2 Re Ro | IE: EA - - ES ET1 EX1 ETO EXD | HEX |88 : e

©0 00 60 6O 0O 80 0O 08 i PCON: SMOD - - - - - - -|[ee

060 60 00 00 0O 0O 06 06 v (09 |00||00| 00|[00|[00||00| 00| | IP: - --PS PTIPXI PTOPXO | FEX |88] | goon: symo smi Mz REN TBS RS TI RI| |08,

||eE| @ 4110 | |11
1 TR ST P |

er ,,i; (]x.BA SFH-]
5— 14 0E 16 —

") by 11111111 [FF

SE B HE

| RSO OV - N 2 pq 00001110 .

. e
9 | pcow:smop - p G Register bank Select control bit 0. Set/cleared | PS¢
%) | B swo swi s Uil by software to determine working register bank |

Figure 3.7: Representa-
Figure 3.5: Highlighted Figure 3.6: Tool tip help tion of a register value in
SFR register for a special function bit various numeric bases

3.2.2 C variables

This panel is a part of simulator user interface that maintains a list of global
static variables defined in your C language code. Names of variables are
displayed along with their current values in simulated MCU. If you program
is not written in C language then this tool has no purpose for you at all.
Otherwise the purpose of this panel is to make it easier to simulate a program
for 8051 written in C language and see what is “really” happening in there.
This tool is capable of extracting variable values from multiple registers and
the displaying them as one variable, one value. Alteration of variable values
is also possible. And search panel in the top right corner of the panel might

3.2. BOTTOM PANEL 21

help you with finding exact variable which you need to see. But note that
functionality of this tool is in fact severely limited, it supports only global
static variables, integers and floats, but variable value modification is allowed
only for integer variables, no floats.

3.2.3 Graph showing voltage levels

This panel might help you to see what is happening on simulated GPIO?
lines. Resolution and grid can be adjusted to better fit your needs. There
are three graphs, one for port latches, one for port outputs (without any
virtual HW) and one for the most realistic GPIO simulation which this IDE
can do.

True state Portlaiches | # Trueoutput | Legerm e

on | P1 — P3

) 7| — Tl o T H
0q o e R oo R ool

|E| % L T—Log. 1 I | R :
— 3 ¢ No valtage H
s 4 [T Undeterminable state e . 1T H
.| 8] [-Access 1o extemal memory [Tl H
— 6 Log. 1 forced to log. 0 [|H
x |7 L H

Figure 3.8: GPIO Graph

3.2.4 Messages panel

This panel displays output from the build-in assembler, external assemblers,
C compiler and other external tools used in this IDE, which prints some-
thing important to standard output. Output from assemblers and SDCC
(C compiler) is parsed to highlight warnings and errors and convert them to
hyperlinks pointing to source code if possible. The panel also implements
a tool for searching strings in the displayed text. User can make this tools
visible by pressing Ctrl-+F.

b4 ‘ Find:|code &, <@ [JMaich case

Preformating S ...

Putting program pieces together ...

Encapsulating code ...

Parsing constants, macros, etc. ...

Expanding macros ...

Final stage ...
Syntax error at 3 in untitled.asm: Symbol not defined:
Pre-processing FAILED !
Creating code listing file ... -> "untitled.lst"

Figure 3.9: Messages panel

2General Purpose Input Output

22 CHAPTER 3. DETAILED INTRODUCTION TO GUI

3.2.5 Notes

This is your personal notes for whatever you want. Originally it was intended
for writing down a list of things which you need to finish in your work, so
some sort of a to do list. But it is just a simple rich text editor with separate
file specific notepad. User can use it as he or she consider appropriate.

x ‘ Find: List L+ < [XIMatch case Notes for file: demo0.asm »
B WELCOME TO MCU 8051 IDE */|Basic demonstration
code ...
What does it consist of: Basic key shortcuts:
2 LEFT: F2 - Initialize simulator
U 1. List of opened files F7 - Step program
5 2. List of project files F6 - Animate program
v 3. Filesystem browser F4 - Reset simulator
4. SFR watches CTRL+F7 - Step back = =

Figure 3.10: Personal notes

3.2.6 Calculator

Calculator is here more or less just for completeness. But you might still
find it to a real asset to your efforts. This calculator is capable of performing
common arithmetical operations, computing trigonometric functions, logi-
cal operations, etc. Supported numeral systems are hexadecimal, decimal,
octal and binary in both integer and real numbers. Supported angular mea-
surement units are degrees, radians and gradians. The calculator is also
equipped with three memory cells where you can save arbitrary numbers for
future computations. On the right side there is a simple calculator dedicated

to calculation timers preset values for the specified time, clock frequency, etc.
3

anD || sin || cos || Tan I 03.1552113248 [+] | 246.422739235 (Nmers preest
Frequency [kHz]|12000| Mode Oﬂ
OR ASin || ACos || ATan 7/8 9 -||deg |+ C ||CA||+-)
+ Time [us] 568
e @ | s] e SE]S MO: [246 Save || Load DEC HEX OCT
THx 238 EE 356
XOR || Log || Ln PI 123 w1 [210 Save |[Load | | TLx 8 8 10
= Repeats 1 . 1
> || Mog REDO 0 c M2: 302 SiUE | LA Cof:'echon 1 1 1

Figure 3.11: Calculator

3Essentially the same but much more advanced function has also the special calculator.

3.2. BOTTOM PANEL 23

3.2.7 Find in files

With this tool you can search all files in certain directory which names
matches specified GLOB* pattern. The search is made for a plain string
or regular expression match. This tool might be very useful when you are
dealing with many, possibly large, source code files and you suddenly want to
find something specific in them. Each line printed in the list of found entries
is a hypertext link which opens the file mentioned in it in the source code
editor and navigates the editor to line matching the item. In other words it
generally the same as well known Unix command “grep”®, but with graphical
user interface.

3.2.8 Terminal emulator

This is a common color VT102° terminal emulator for the X Window System”
as you probably know. More precisely It’s embedded rxvt-unicode terminal
emulator by Marc A. Lehmann and others. Background and foreground
colors used in the terminal emulator are configurable in “Terminal config-
uration Dialog”. Note that this feature in not available on Microsoft®)
Windows(®) operating system and probably will never be, because terminal
emulator would have only a little use there.

spSimulator | :=C variables | 5710Ports |@Messages | v Noles | “Calculator i Terminal] | Findinfiles | & Hide |

10G/466

Figure 3.12: Embedded rxvt-unicode terminal emulator, with the Midnight Commander
running in it

4An instance of pattern matching behavior, for example “*.c4-" matches all files with
“.c++" extension.

5A command line text search utility originally written for Unix. The name is taken
from the first letters in global /regular expression/print. Its official date of creation is given
as March 3, 1973.

A video terminal that was made by Digital Equipment Corporation (DEC). Its detailed
attributes became the de facto standard for terminal emulators.

"Computer software system and network protocol that provides a basis for graphical
user interfaces.

http://software.schmorp.de/pkg/rxvt-unicode.html
http://software.schmorp.de/pkg/rxvt-unicode.html
http://www.midnight-commander.org/

24 CHAPTER 3. DETAILED INTRODUCTION TO GUI

3.3 Left panel

3.3.1 List of opened files

Shows list of all files opened withing the current project. Each entry has its
own pop-up menu. Noteworthy features are search bar, sorting by name, size,
etc. and open with an external editor. Each file can be added or removed
from the list of project files. There is not much to say about it, it’s just a
simple list with a few nice features but nothing complex.

3.3.2 List of project files

Shows list of all files assigned to the current project. Each entry has its own
pop-up menu. Noteworthy features are search bar, sorting by name, size,
etc. and open with an external editor. Each file can be excluded from the
list of project files, opened or close withing the project.

3.3.3 SFR watches

From here you can see all special function reg-

“«@E e @ isters on your chosen MCU in one compact list.

et bl Search panel might help you locating particular
1]]

DOPSH 00 o SFR in this panel and also in the main simula-

99 SBUF R . .

99 SBUF T » owBsFR tor panel. Each register has two numerical rep-

98 SCON 00 0 g

R A resentations of its value in the simulated MCU,

88 TCON . o . .

scTHO o o [decimal and hexadecimal.

8D TH1 1

8A TLE ee @

8B TL1 1 I

BITMD % o [3.3.4 File system browser

Search: TL L ¥|

This panel should help you quickly navigate in
your file system in order to open files you want
to see as quickly as possible. But many people
generally don’t like panels like this and will al-
ways use only file selection dialog instead.

Figure 3.13: SFR watches

3.4 Right panel

3.4.1 List of bookmarks

From here you can easily navigate trough all bookmarks made in the current
source code file. The panel also highlights item in the list which corresponds

3.4. RIGHT PANEL 25

to the current line (line with cursor) in the source code editor. You can also
remove all bookmarks at once by pressing the “« Clear all” button.

3.4.2 List of breakpoints

Pretty much the same as list of bookmarks, but this panel shows breakpoints
instead of bookmarks, that is the only difference.

3.4.3 Instruction details

When you are writing a code in

the assembly language, this panel Z1¢ 14 0= 10 = 8
might be a great help for you. It E—

shows all valid sets of operands
for the instruction on your cur-
rent cursor position in the source

B
==
ad

W e e
m
m

[Ty

code and highlights the set which w s
you are probably using. The @wov arsctn R »
. . Move register to direct byte ra A A2
same works also for directives. Cass: Deta Tranter
. . . . Flags: I'HI
Each line in list has its own help g T
window which appears when user L

Note:

points at it by the pointer. This
help window shows additional de-
tails regarding the exact instruc-
tion. Note also the “@ Show leg-
end” button in the upper right corner of the panel.

Figure 3.14: Instruction details

3.4.4 Data register watches

This panel might help you to keep track of specific
)¢ %10 =19 = ») data registers, except for SFR and EEPROM.
2 O8|eemed |4 User can add arbitrary data memory registers
o o which he or she consider to be the most impor-
o tant for his or her current work. You can add

a register in the bottom part of the panel. And
you can search for specific register, configure the
_ _ panel and save or load the list of register in the
oon Jluv_ExTERNAL_RAM | 4 [3 X top panel.

This tool is capable of extraction of used sym-

Figure 3.15: Data register
watches

26 CHAPTER 3.

DETAILED INTRODUCTION TO GUI

bols from a code listing file® generated by an as-
sembler. This feature can enabled or disabled in
the panel’s configuration menu. The current list

of watched registers can be saved into a file and loaded from a file®.
Memory segments are distinguished by format of the addresses. As you
can seen in the example, the meaning is this:

Address format ‘ Memory segment

1 or 2 digits

3 digits
4 digits

dot and 2 digits

Internal RAM (not SFR)
Expanded RAM
External RAM

Bit (including SFR area)

Table 3.2: Data register watches: Register address

3.4.5 Subprograms call monitor

From here you can monitor all subprogram and
interrupt calls in your program. For each en-
try there is mentioned the type of call, acall,
lcall or interrupt, return address and address
from which the call was invoked. And you can
force each of them to premature return.

3.4.6 List of symbols

This tools shows a list of symbols defined in
source code of your program, works for both as-
sembly language and C language. The list is man-
aged automatically as the user edit the code and
is featured with search panel for easy navigation.

Types of symbols can be distinguished by their colors and icons. Colors of
particular symbols corresponds to the colors used in the source code editor

to highlight them.

3.4.7 HW plug-ins manager

This tool does just one thing, allows user to use plug-ins in MCU 8051 IDE.
Primary purpose of these plug-ins should be implementation of inter-operation

8File with .1st file name extension.
9These file usually have extension .wtc

7 1% 1% 10 1= O |m)
[XIEnable [X] Include interrupts
[save |x) Clear 3¢ RETURN
Interrupt 001Bh =
Return address: 000Eh
LCALL 000Eh
. nnorw
Return address: # Go o source
ACALL s
Return address:
1Copy source address to clipboard
1Copy target address io clipboard
TOTAL: 3
%] Remove this
.
Figure 3.16: Subprograms

call monitor

3.5. OTHER TOOLS 27

Label
Constant
Macro

C variable
C function
Other

THELHED

Table 3.3: Symbol colors and icons in default settings

with certain hardware tools, most probably MCU programmers. if you are
interested in writing these plug-ins, please refer to chapter 7.

3.5 Other tools

3.5.1 SFR map

A tabular overview of all available SFRs on your MCU. This tool has similar
graphical form as tables of SFR often used in 8051 manuals, but the most
important difference is that this one is connected to the simulator and is
capable of representing and modifying current values of SFRs in the MCU
simulator.

3.5.2 Map of bit addressable area

This tool is a part of the simulator user
interface. It shows all bits in the bit ad-
dressable area of the simulated MCU. Each
square represents one bit, when simulator
Figure 3.17: Map of the bit ad- iS on, you can also change value of each one
dressable area of them by clicking on it. Labels and color

used here should be hopefully clear from

the legend at the bottom.

3.5.3 Stack monitor

This tool makes it possible to see entire MCU stack in
one view. You can also push any value you want onto the —[# = swicn =

Addr HH Dec Binary Oct A
OE 59 @9 01011001 131 Y

stack or pop a value from it at any time. However this | & 3 ° s s

6C 5D 93 01011101 135]
08 00 © 000EEO0E 000

particular tool does not allow for changing the values on | & & 2 s o0
69 00 O 000O0O0O 00O
: 08 ©F 15 0eeellll @17
the tack in any other way than these.
Each line in the stack monitor represents one octet sl @ eor fousioe

Legend:

in the stack, each octet is represented in four numerical — [smerst sierosran soterrpe

Figure 3.18: Stack
monitor

28 CHAPTER 3. DETAILED INTRODUCTION TO GUI

bases, hexadecimal, decimal, binary and octal and also as
a character according to ACII chart. Newly added values
are pushed on the top of the list. And their origins are
distinguished by background color of the address. These colors are explained
in the legend on bottom.

Note that button “Clear” doe not clear the stack but instead it clear only
the monitor! Buttons “POP” and “PUSH” are intended for manipulation
with the stack’s content.

3.5.4 Symbol viewer

Symbol viewer shows the table of symbols

FEFEEEEETsesseeE=| defined in your program, it works only for

@

syt The Mo oec et assembly language. The table content is
?7MCU_8051 IDE Number 8651 32849 NO

e At o I taken from code listing generated by assem-
IACC DATA 0OE® 224 NO

|ACSR DATA 0097 151 NO .

pocr, oy sors 2w | bler. In the top part of the window you can
Display Sortby

S—] D —— find search bar, and in the bottom part you
S; zoa can specify filter criteria for what you want
— to see in the table and specify sorting order

of the symbols displayed. Symbol in this

context are various constants and labels.

untitied.st

Figure 3.19: Symbol viewer

Figure 3.20: ASCII chart Figure 3.21: 8051 Instruction Table

O [T |~ ASCIl chart - MCU 8051 IDE - % 5% @ T A 8051 Instruction Table - MCU 8051 IDE
0x_0 Ox_1 0x 2 0x_3 0x_ 4 0x 5 0x 6 0x_7 Ox 8 0x 9 Ox_A 0x B 0x C 0x_D Ox_E Ox_F V- 122 122 221 232 221 224 211 299 294 294 294 294 294 211 294 241 [8
o o o o - o . o - = = = - - . - 06 JNC ACALL ANL ANL ANL ANL ANL ANL ANL ANL ANL ANL O ANL ANL ANL AN
oxp_ M- SOH T | LF VT "S- 122 122 221 232 221 221 211 211 211 211 211 211 211 211 211 211
o, 2 AP XRL XRL XRL R XA XRL AL XRL AL XRL XRL XAL XA AL
~ 122 122 221 232 221 221 211 211 211 211 211 211 211 211 211 211
Oxl_ o7 UNZ ACALL ORL JMP MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV
M 122 122 222 112 221 232 221 221 221 221 221 221 221 221 221 221
o2 oxg_ SMP AMP AN NOVC DV MOV MOV MOV MOV NOV MOV NOV MOV MOV MOV MOV
- — 122 122 222 212 114 232 222 222 222 222 222 222 222 222 222 222
G| MOV ACALL MOV WOVC Suen SuSe [SUBE) SUBS SRS SUEB SUBS SUBE SUED SUBB SUEB SUBB
013 . . L 252 122 222 212 221 221 BAR|211 211 211 211 211 211 211 211 211
oxp OFL AP MOV NG WU MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV
o @ 223 122 221 112 114 222 222 222 222 222 222 222 222 222 222
"~ |0xd0 Ox41 0x42 44| 0345 0X46 0x47 Ox48 0x49 |0x4A|0x4B 0 Ox4 g AN AGAL CPL CPL GNE GINE GINE GNE GINE GINE GINE GINE GINE GINE GINE GINE
™B_ 222 122 121 111 332 332 332 332 332 332 332 332 332 332 332 332
OP code (hex): SUBB A,@RI Legend:
e] —
Class: Arithmatic Operations Length: 1 Operands
Description: Subiract indirect RAM from ACC with borrow Time: 1 Length
0x70 0 5 0x76 Ox7’ 0: Note: Flags: C,O0V,AC Time
Character: [OE0
Hexaddress) Octaddress) Caretnotation
Decaddress ') |5 | Binaddress ') 00000101| CEscapeCode)| |
[ext

3.5. OTHER TOOLS 29

3.5.5 ASCII chart

Colorful interactive ASCII chart, it may prove handy especially when you
are dealing with serial communication and this sort of things.

3.5.6 8051 Instruction Table

Colorful interactive 8051 instruction table, very much alike the ASCII chart.
But instead of ASCII code you can find there the complete table of 8051
instruction mnemonics, OP codes and related things.

3.5.7 8-segment editor

With this tool you can easily determine what

value you have to set on a port to display a digit

on a numerical LED display. In the left part of | SN
the dialog window, you can find numerical val- . o] '- ‘ g %
ues corresponding to the digit displayed in the s @ O
middle part. These values are represented for oee 312211001 ¥ | oo
both common cathode and anode and in three _——

numerical bases, hexadecimal, decimal and oc-
tal. Buttons on left side from entry boxes copies Figure 3.22: 8-segment editor
value from adjacent entry box into clipboard.

In the right part of the window you can set what port pin is connected to
what LED segment.

3.5.8 Stopwatch

Stopwatch is a tool which can measure certain things in the simulated proces-
sor, such as number of instructions processed so far, number of microseconds
which would it take for a real processor to execute, number of breakpoints
met so far etc. User can also set it to stop the simulation when certain limit
in the measurement has been met or exceeded.

3.5.9 Scribble notepad

This is something like a small whiteboard, where you can draw of write your
notes. It is a little bit more free than conventional text editor. You can also
insert images, supported image formats are PNG and a few others. But don’t
rely on the scribble notepad to much, this tool has no save or load functions,
anything you draw or write there is just temporary and it will not recover
upon next start of the IDE.

30 CHAPTER 3. DETAILED INTRODUCTION TO GUI

3.5.10 Base converter

When you are programming micro-controllers, you
~ & Conrt %] might want to convert numbers between various nu-

HEX DEC BIN OCT Bits BCD ASCH
24//36 (100160 |44 HENEENNEN]2 |4 |5

e o Y o mmmm s s meric bases. One could say that everyone dealing
e MEEREREERE 1 with such things as micro-controllers would be able

to do these conversion without use of any tool. But
this doesn’t mean that such a tool can never be
useful. Values written in the entry boxes of the
base converter are saved when user leaved the IDE
and are recovered upon next start along with all opened base converter tool
windows.

Figure 3.23: Base conver-
tor

3.5.11 RS-232 debugger

This tool is capable of transmitting

and receiving data to/from RS-232
. “4, Port configuration
port in your computer, today per- e S owos A PR o = P
sonal computers usually do not have e ‘ e
this type of port, but you can always S L pas o
use something like a USB to RS-232 o bR ms 4 8 cratie recapton.) Ginee
b d Datatosend Ep £ Receiveddata
ridge. & s ———
I h th t th d 3 i | | 20 20 20 g :i :: :: g: E:]ﬁ]fo
assume ere a/ e rea! er IS ; 2821 48 6F 77 20 61 72 65 !How are.
. . . L[|79 6F 75 20 3F you 7
familiar with the RS-232 communica- [- -
ﬁ)Send .r:e\fcleq % Clear selected < Receive here .
tion protocol and related terms. This

10
tool acts as a DTE™. Figure 3.24: UART/RS-232 debugger
On the diagram in the upper left

corner you can see current logical
level on each of RS-232 wires except for RxD and TxD. You can also set value
for wires DTR!! and RTS'? and trigger the break by button BREAK.

Right upper corner contains configuration controls, their functions should
be mostly obvious. Check-box “Enable reception” enables or disables writing
to hexadecimal editor “Received data”. Button “Close” closes the opened
physical port. And button “& refreshes the list of available physical ports.

In the bottom part you can see two hexadecimal editors: “Data to send”
and “Received data”. These are representations of data which we are dealing
with. By button “Receive here” you can set address in the hexadecimal editor

Data Terminal Equipment, the other side is DCE (Data Circuit-terminating Equip-
ment).

"Data Terminal Ready

12Ready To Send

3.5. OTHER TOOLS 31

where the received data will be written. And by button “Send selected” you
can trigger transmission over the opened physical port, selected chunk of the
data will be send then. Button “Clear selected” are intended for removing
data from the hexadecimal editors editors.

3.5.12 Hexadecimal editors

In this IDE there are several hex-
% adecimal editors used for various

Fol~.] Code memory - test - MCU 8051 IDE m

File Edit Mode

M Ea| e wex-| purposes. Each of these editors is
. D S o 57 equipped with a string search tool
062875 I FF 75 61 FF 75 89 03 D2 BC 80 06 30 FE 57 0 u. . i and address bars of the left and
65 6C 63 6F 6D 65 20 69 6E 20 4D 43 55 20 38 30 elcome in MCU 80
0 49 44 45 20

21 20 51 IDE !

top side. And in some cases with

= file saving and loading capability,
L numerical base switch, ASCII view
@ Leftview (3¢ From cursor . .
Omgnven Olsaonarss and a navigation bar at the bottom.
W Ok ¢ Cancel o,
Editing is allowed only in overwrite
VALUE ADDRESS
DEG: [166 | HEX:[AB DEG: [33 HEX: [0021 LIMP. mode’ Copy a,nd paste WOrkS as
OCT: 250 BIN: 10101000 OCT: 0000041 BIN: |0000000000100001 LCALL . .
merearer | UsUal, search dialog can be invoked

by pressing Ctrl4+F and user can
switch between view (left and right)
by pressing Tab key. Non printable
characters in ASCII view are displayed in red color.

Figure 3.25: MCU code memory editor

MCU code memory editor allows user to see and modify contents of
the CODE memory of the simulated micro-controller. Special feature of this
particular editor is that instruction OP code currently pointed by program
counter (PC) is highlighted with dark orange background along with the
instruction’s operands. And the same applies also for the previously executed
instruction but highlight color is light orange in this case.

MCU data/xdata/eeprom memory editor allows user to see and mod-
ify contents of the IDATA/XDATA/EEPROM memory of the simulated
micro-controller. Special features of this editors are that recently changed
octets are highlighted with light orange foreground color and octets currently
being written into the memory are highlighted with gray background color.

MCU eeprom write buffer editor allows to see and modify EEPROM
write buffer. Current EEPROM write offset is displayed as well.

32 CHAPTER 3. DETAILED INTRODUCTION TO GUI

Independent hexadecimal editor is universal hexadecimal editor with
maximum capacity of 64kB and support for Intel®8 HEX file format. This
tool is completely independent from your project in the IDE. This too might
be particularly useful when you want to and possibly modify content of a
Intel®8 hex file, but do not alter the simulated MCU.

3.5.13 Hibernation of simulated program

The IDE is capable of saving execution state of the simulated program into
a file and resuming the program from it anytime later. The file, usually
with extension .m5ihib, contains values of all data registers including SFR
in the simulated MCU along with other values determining MCU state as for
example list of active interrupts. The file is in XML format, human readable
and usually occupies a few tens of kilobytes.The file does not contain content

of the CODE memory, so it has to be available somewhere else in a separate
file.

3.5.14 Interrupt monitor

Interrupts monitor is a specialized tool intended for viewing and manipu-
lating with interrupts in simulated MCU. With interrupt monitor you can
invoke any interrupt you want at any time, force any interrupt at any time to
return, change interrupt priorities or disable or enable particular interrupts.
You can also see all interrupts synoptically in one window and alter values
of their configuration flags.

4= == [nterrupts in progress 4= == Pending interrupts = == Interrupt priorities
Priority: Priority: 1

Vector:
Flag bit:

Enable bit: EX0
Priority bits: PX0H ,PX0 Line:

0x03
IE0

Invoked from:
PC: 0x0003
File: untitled.asm

Priority:

Veclor:
Flag bit:

Enable bit: ETO
Priority bits: PTOH , PTO

0x0B
TFO

Invoked from:
PC: 0x000B
File: untitied.asm
Line: 50

[

Vector: 0x13 Enable bit: EX1
Flag bit:IE1T Priority bits: PX1H, PX1

Priority: I

Vector: 0x23 Enable bit: ES
Flag bit: SPIF Prigrity bits: PSH, PS|

£l

Vector: 0x0B Enable bit: ETO
Flag bit: TFO Priority bits: PTOH , PTI

H External interrupt1 7

Vector: 0x1B Enable bit: ET1

Flag bit: TF1 Priority bits: PT1H,PT1

UART receive “f
UART transmit = |
R .

Figure 3.26: Interrupt monitor

3.5. OTHER TOOLS 33

3.5.15 Conversions between *.hex, *.bin and *.adf files

Sometimes it might prove helpful to have some tool to convert a binary file
to Intel®8 Hex and vice versa. For this purpose MCU 8051 IDE is equipped
with a simple tool set for this purpose. In the “Main Menu” — “Utilities”
you can find these tools:

e i HEX — BIN
Convert Intel®8 Hex file to raw binary file

e i BIN — HEX
Convert raw binary file to Intel®8 Hex

e i SIM — HEX
Convert simulator assembler debug file (.adf) to Intel®8 Hex file

e i SIM — BIN
Convert simulator assembler debug file (.adf) to raw binary file

e i Normalize Hex
Read and rewrite the given Intel®8 Hex file, so that all records satisfies
specified maximum length (can be set in the assembler configuration
dialog), all records are in incremental order and no records overlaps
with others.

3.5.16 Normalization of source code indentation

Uniformly intended code is always more aesthetically pleasing and more read-
able. When you don’t have the luxury of having such a code from the first
hand, perhaps you will find this feature helpful. This function is available
for assembly language and C language if program indent is installed on your
system. User can access this function from the “Main Menu” — “Tools” —
“Auto indent”.

A small example of the auto indent function in action

Original code: Automatically intended code:
abc TFh abc TFh
; Start at address 0x00 ; Start at address 0x00
Oh Oh
labelO:inc RO labelO: inc RO
inc @RO inc @RO
cjne RO labelO cjne RO labelO
mov RO #0h mov RO, #0h
sjmp labelO sjmp labelO
; End of assembly ; End of assembly

3.5.17 Change letter case

34 CHAPTER 3. DETAILED INTRODUCTION TO GUI

This tool can change letter casing to upper cae
. A AiChange letter case
or lower case of certain types tokens which 20x 20
. e 980 gumme, 988
your source consists of of. For example you | 085 o 800
. . . . Symbol O0® Diectve 00®
can easily convert all instruction mnemonics — |wwe 205 e $°5
. . . Immediate dec. [e]e]O) Immediate bin [e]elO]
in the code to uppercase. It is intended for |gmesess Dol e Ce0
users who strictly prefers one or another con- —————

vention of letter casing in assembly language. pigure 3.27: Change letter case
You can invoke the tool from “Main Menu” — dialog
“Tools” — “Change letter case’.

e & Convert to uppercase
e ¥ Convert to lowercase
e % Keep current case

3.5.18 User defined commands

Introduction This feature was added in order to enable for use of any aux-
iliary tools which might useful while working in this IDE. For instance, some
hardware tools or some sort of a source code management system like Git
or SVN. These custom commands are basically mere Bash scripts with some
kind of pseudo-variables available in it. These pseudo-variables are formed as
strings beginning with “%”. Before each script execution they are expanded
to values corresponding to their meaning. For instance “%filename” expands
to the name of the current file. Note that “%%” is expanded as single “%”.

Pseudo-variable | Meaning

%URL The full URL of the current file
%URLS List of the URLs of all open documents
Y%directory Project directory

%filename The file name of the current document
Y%basename Same as %filename, but without extension
Y%mainfile Name of project main file

%line Number of the current line

%column Number of the current column
Y%selection The selected text in the current file
Yotext The full text of the current file

Table 3.4: List of pseudo-variables

Configuration There is specialized configuration dialog for these custom
commands.

3.6. CONFIGURATION DIALOGUES

35

Execution After the script is executed suc-
cessfully or not, dialog showing the results
will appear upon completion of the script.
This dialog contains all textual output from
the script caught on standard output and
standard error output. If the script outputs
anything to the standard error output it is
considered unsuccessful.

3.5.19 Clean-up project folder

This tool can proof useful particularly when
your project directory gets “polluted” with
lots of unnecessary files, and you want to get

%3 Edit custom commands

%6 e

ite the name of my file and directory where itis located

% cancel W Ok

Figure 3.28: Custom commands
configuration dialog

rid of them easily and first of all safely. It removes files with certain file
name extensions from the project folder. The list of removed files is then
written in results dialog. Available from “Main Menu” — “Tools” — “Clean

up project folder”.

3.5.20 File statistic

Display certain statistical information about

“Main Menu’ — “File” — “File statistic’.

3.6 Configuration dialogues

the current source code file.

Configuration dialogues are graphical tools for customization of this inte-
grated development environment. And they comprises of these components:

Editor configuration

-] =] Editor configuration - M

‘= Editor configuration

save interval and others.

Figure 3.29: Editor
configuration dialog

In editor configuration dialog

user can change preferred editor from default built-in
editor to for example Vim or Emacs and modify config-
uration the built-in editor. Configurable are colors used
for syntax highlight, colors for text area background
and so on, font used by editor, indentation mode, auto-

36 CHAPTER 3. DETAILED INTRODUCTION TO GUI

Compiler configuration Compiler configuration di-
alog allows user to configure behavior of the built-in
assembler, chose another assembler instead of this one.
Configure the preferred assembler and configure the C
compiler (SDCC). Compiler configuration is stored in
the project file (the file with .mcu8051ide extension).
So these setting are specific to the one specific MCU 8051 IDE project.
Currently supported external assemblers are these:

e ASEM-51 13
e ASL 4
e ASH1 15

How to link multiple files when using C language:'6
1. Write makefile,

2. set the IDE to use your makefile instead of calling the C compiler di-
rectly (Configuration -> Compiler configuration -> GNU make utility),

3. start compilation as usual.

Simulator configuration Simulator configuration dialog configures these:
1. How to treat indeterminable values in simulator engine

2. How many steps will be remembered during the simulation for later
backward steps.

3. What warning conditions will be ignored during the simulation

Right panel configuration Configures colors used in tools “Instruction
details” and “Register watches” in the right panel.

Main toolbar configuration Configures contents of main application tool
bar.

13A really useful assembler written by W.W. Heinz. You can find it at http://plit.
de/asem-51/home.htm

14 Available at http://linux.maruhn.com/sec/asl.html

15 Available at http://www.pjrc.com /tech /8051

16This feature is not yet supported on MS Windows.

http://plit.de/asem-51/home.htm
http://plit.de/asem-51/home.htm

3.6. CONFIGURATION DIALOGUES 37

File Edit View Project Simulator Virtual MCU Virtual HW Tools Utiliies Configure Help

e EadE o@D lE o0 i G ~Busea@ oIS Fsca|ddddnBEeDo

Figure 3.30: Main toolbar

Custom commands configuration Configures user defined commands,
which are essentially Bash scripts. This feature is currently not available on

MS® Windows®OS.
Shortcuts configuration Configures key shortcuts used in the IDE.

Terminal emulator configuration Configures terminal emulator at the
bottom panel. This terminal emulator is embedded rxvt-unicode. User can
set foreground color and background color of the terminal emulator window
and the font. This feature is currently not available on MS® Windows®OS.

Global MCU 8051 IDE configuration Changes
settings like GUI language, size of fonts used in the
GUI, GUI widget style, whether splash screen should

be displayed each time when the IDE is started and so
on.

Resetlo defautts % Cancel v ok

Figure 3.31: Global
configuration dialog

http://software.schmorp.de/pkg/rxvt-unicode.html

38 CHAPTER 3. DETAILED INTRODUCTION TO GUI

39

Chapter 4

Build-in macro-assembler

In this chapter we will be concerned with MCU 8051 IDE build-in assembler.
1 With syntax of its statements, directives and 8051 assembler instructions. I
assume that the reader is familiar with general concepts of assembly language
programming and 8051 architecture. So I will not explain these here.

4.1 Statements

Source code files for this assembler must be text files where lines are formed

like these:
[label: 1] [instruction [operand [, operand [, operand 11 1] [;comment]
[label: 1] [argument] [;comment]
symbol argument [;comment]

Everything in square brackets is optional. Compilation does not go be-
yond line containing “end” directive, so after that directive the code do not
have to be syntactically valid. Empty lines are allowed as well as line contain-
ing only comment or label. Statements can be separated by spaces, NBSP
characters® and tabs. Statements are case insensitive and their length is not
limited, overall line length is also not limited.

4.2 Symbols

Symbol names for numbers, macros or addresses defined by user in the code
using appropriate directive. Like with “equ” directive you can define a new

!This assembler manual is inspired by ASEM-51 manual, a great work done by W.W.
Heinz

2No Breaking Space (0xC2)

40 CHAPTER 4. BUILD-IN MACRO-ASSEMBLER

Code 2 An example of well formed assembly language code

start: ; Start timer O in mode 2

mov R5, #0h
mov IE, #OFFh
mov TLO, #255d
mov TMOD, #03h
setb TRO

sjmp main

; Main loop
main: sjmp $; Inifinite loop

; Program end

symbol and assign a value to it right away. Symbols may consist of upper
and lower case letter, digits and underscore character (“_”), their length is
not limited, they are case insensitive and they can be the same as language
keywords. Be aware of that there cannot coexists two or more symbols in
the same memory segment which differs only by letter casing, in other words
symbols “abc” and “ABC” are completely the same thing.

4.3 Constants

There are two types of constants numeric constants and character constants.
Numeric constants consist of a sequence of digits allowed for the numeric
base used and followed by the radix specifier. If the number begins with a
letter, there must be the zero digit placed before the number. For example
“abh” is not valid numeric constant, but “Oabh” is. Character constants con-
sist of sequence of one or more characters enclosed by quote character (?).
C escape sequences can be used in character constants. If you want to place
quote character (?) into the constant, you can either place two quotes instead
of one (“??77”) or escape the quote, that means place backslash “

” before it. There is significant difference between single character constant
and multiple character one. Single character constant is regarded by assem-
bler as 8 bin integer number and multiple character constant is a string, a
sequence of characters. Since version 1.4.1 it is possible to use prefix “0x”
(and “0X”) as radix specifier for hexadecimal numbers, so “Oxaf” is the same
as “Oafh”; etc.

4.4. EXPRESSIONS

41

Constant type

Radix specifier

Binary
Octal
Decimal

Hexadecimal

Allowed digits
0.1
0.7
0..9
0..9,A..F

B

OorQ

D or none
H

Table 4.1: Radix specifiers

Code 3 An example of constants

; These are the
100111b
47q

39d

27h

399

PP e

same number

; Binary

; Octal

; Decimal

; Hexadecimal
; Character

; This is an example of string

’string’

; String

4.4 Expressions

Arithmetical expressions are evaluated at compilation time and replaced by
assembler with constant corresponding the their resulting value. Expressions
comprises of arithmetical operators, constants, symbols and another expres-

sions. An example of such expression might be (X XOR OFFOOH)

Operator [Description [Example
Unary Operators

NOT one’s complement NOT 0a55ah
HIGH high order byte HIGH 0ab5ah
LOW low order byte LOW 0abbah
Binary Operators

+ unsigned addition 11 + 12

- unsigned subtraction 13 + 11

* unsigned multiplication | 3 * 5

/ unsigned division 20 /4

MOD unsigned remainder 21 MOD 4
SHL logical shift left 32 SHL 2
SHR logical shift right 32 SHR 2
AND logical and 48 AND 16
OR logical or 370q OR 7
XOR exclusive or 00th XOR 005h
. bit operator P14

EQ, = equal to 11 EQ 11
NE, <> not equal to 11 NE 11
LT, < less than 11 LT 12
LE, <= less or equal than 11 LT 11
GT, > greater than 12 GT 11
GE, >= greater or equal than 12 GT 11

Table 4.2: Expression operators

42 CHAPTER 4. BUILD-IN MACRO-ASSEMBLER

Code 4 An example of expressions

abc (2000 * 3 / 100)
Xyz (LOW abc)
(abc > (5 MOD 2))
MOV A, # ((15h XOR 12) OR xyz)

ADDC A, # (HIGH 1234h)

4.5 The instruction set processing

This assembler is capable of translating all 8051 instructions with all possible
sets of operands. And extends this set with 2 pseudo-instructions: “CALL”
and “JMP” which do not stand for any operation code, but are translated
according to the used operand. “CALL” can be translated as “ACALL” or
“LCALL”, “JMP addr” can be translated as “SJMP”, “AJMP” or “LJMP”.

4.6. ASSEMBLER DIRECTIVES 43

4.6 Assembler directives ENDM

ifn IF Not, conditional assembly
Syntax:
IFN <expr>

Example:
IF(2 * 4 - CND)
MOV A, #20h
ELSE
MOV A, #40h
ENDIF

ifdef IF DEFined
Syntax:

IFDEF <symbol>

Example:
IFDEF CND
MOV A, #20h
ELSE
MOV A, #40h
ENDIF

ifndef IF Not DEFined
Syntax:

IFNDEF <symbol>
Example:
IFNDEF CND
MOV A, #20h
ELSE
MOV A, #40h
ENDIF

rept REPeaT Macro
Syntax:

REPT <expr>

Example:

REPT 5
NOP
ENDM

times REPeaT Macro
Syntax:

TIMES <expr>
Example:

TIMES 5
NOP

if Conditional assembly
Syntax:

IF <expr>

Example:
IF(2 * 4 - CND)
MOV A, #20h
ELSE
MOV A, #40h
ENDIF

else Conditional assembly
Syntax:

ELSE
Example:
IF(2 * 4 - CND)
MOV A, #20h
ELSE
MOV A, #40h
ENDIF

elseif Conditional assembly
Syntax:

ELSEIF <expr>
Example:
IF(2 * 4 - CND)
MOV A, #20h
ELSEIF SOMETHING_ELSE
MOV A, #40h
ENDIF

elseifn Conditional assembly
Syntax:

ELSEIF <expr>
Example:
IF(2 * 4 - CND)
MOV A, #20h
ELSEIF SOMETHING_ELSE
MOV A, #40h
ENDIF

elseifdef Conditional assembly
Syntax:

ELSEIF <expr>
Example:
IF(2 * 4 - CND)
MOV A, #20h

44 CHAPTER 4.

BUILD-IN MACRO-ASSEMBLER

ELSEIFDEF SOMETHING_ELSE
MOV A, #40h
ENDIF

elseifndef Conditional assembly
Syntax:

ELSEIF <expr>

Example:
IF(2 * 4 - CND)
MOV A, #20h
ELSEIFNDEF SOMETHING_ELSE
MOV A, #40h
ENDIF

endif Conditional assembly
Syntax:

ENDIF

Example:
IF(2 * 4 - CND)
MOV A, #20h
ELSE
MOV A, #40h
ENDIF

endm END of Macro definition
Syntax:

ENDM

Example:
ABC MACRO
MOV B, #12d
ENDM

end END of the program
Syntax:

END

Example:
END

list enable code LISTing
Syntax:

LIST

Example:
NOP
NOLIST
NOP

NOP
LIST
NOP

nolist disabled code listing
Syntax:

NOLIST
Example:
NOP
NOLIST
NOP
NOP

LIST
NOP

dseg switch to DATA segment [at address|
Syntax:
DSEG [AT <expr>]
Example:
DSEG at 20d
iseg switch to IDATA segment [at address|
Syntax:
ISEG [AT <expr>]
Example:
ISEG at 10d
bseg switch to BIT segment [at address|
Syntax:
BSEG [AT <expr>]
Example:
BSEG at 5d
xseg switch to XDATA segment [at address|
Syntax:
XSEG [AT <expr>]
Example:
XSEG at 30d
cseg switch to CODE segment [at address|
Syntax:

CSEG [AT <expr>]

4.6. ASSEMBLER DIRECTIVES 45

<symbol> CODE <expr>
Example:
CSEG at 40d Example:
TBL CODE 600h

flag define a FLAG bit
Syntax: data define address in the DATA memory
Syntax:
<symbol> FLAG <expr>
<symbol> DATA <expr>

Example: Example:
F4 FLAG 16h UIV DATA 20h
Note:
Deprecated directive. Consider directiidaial defineaidress in the Internal DATA mem-
ory
Syntax:
skip SKIP bytes in the code memory
Syntax: <symbol> IDATA <expr>
Example:
SKIP <expr> UIV IDATA 20h
Example:
SKIP 5 xdata define address in the External DATA mem-
ory
Syntax:
equ EQUivalent
Syntax: <symbol> XDATA <expr>
Example:
<symbol> EQU <expr> UIV XDATA 400h
Example:
ABC EQU RO macro MACRO definition
XYZ EQU 4Eh+12 Syntax:
<macro> MACRO [<arg0> [,<argl> ...]
bit define BIT address Example:
Syntax: ABC MACRO X
MOV X, #12d
<symbol> BIT <expr> ENDM
Example:
ABC BIT P4.5 local define a LOCAL label inside a macro
Syntax:

LOCAL <label>
set SET numeric variable or variable register

Syntax: Example:
ABC MACRO X
<symbol> SET <expr> LOCAL xyz
<symbol> SET <register> xyz: MOV X, #12d
ENDM
Example:
ALPHA SET RO
ALPHA SET 42+BETA ds Define Space
Syntax:
code define address in the CODE memory DS <expr>

Syntax: Example:

46 CHAPTER 4. BUILD-IN MACRO-ASSEMBLER

DS 2+4

dw Define Words
Syntax:

DW <exprl> [,<expr2> ...]
Example:
DI 0,02009H,2009,4171

db Define Bytes
Syntax:

DB <exprl> [,<expr2> ...]
Example:
DB 24,’August’,09, (2%¥8+24) /8

dbit Define BITs
Syntax:

DBIT <expr>
Example:
DBIT 4+2

include INCLUDE an external source code
Syntax:

INCLUDE <filename>
Example:
INCLUDE ’my file.asm’

org ORiGin of segment location
Syntax:

ORG <expr>
Example:
ORG OBh

using USING register banks
Syntax:

USING <expr>
Example:
USING 2

byte define BYTE address in the data memory
Syntax:

<symbol> BYTE <expr>
Example:
UIV BYTE 20h
Note:
Deprecated directive. Consider directive DATA instead.

4.7. ASSEMBLER CONTROLS

47

4:. 7 Assembler ContrO].S$noli Don’t list subsequent source lines

$date Inserts date string into page header

Syntax:

$DATE (string)
Example:

$DATE (1965-12-31)

$da Inserts date string into page header

Syntax:
$DA(string)

Example:
$DA(1965-12-31)

$eject Start a new page in list file
Syntax:
$EJECT
Example:
$EJECT

$ej Start a new page in list file
Syntax:
$EJ
Example:
$EJ

$include Include a source file
Syntax:
$INCLUDE(string)
Example:
$INCLUDE (somefile.asm)

$inc Include a source file
Syntax:
$INC(string)
Example:
$INC(somefile.asm)

$list List subsequent source lines
Syntax:
$LIST
Example:
$LIST

$li List subsequent source lines
Syntax:
$LI
Example:
$LI

Syntax:
$NOLI
Example:
$NOLI

$nolist Don’t list subsequent source lines
Syntax:
$NOLIST
Example:
$NOLIST

$nomod Disable predefined SFR symbols
Syntax:
$NOMOD
Example:
$NOMOD

$nomo Disable predefined SFR symbols
Syntax:
$NOMO
Example:
$NOMO

$nomod51 Disable predefined SFR symbols
Syntax:
$NOMOD51
Example:
$NOMOD51

$paging Enable listing page formatting
Syntax:
$PAGING
Example:
$PAGING

$pi Enable listing page formatting
Syntax:
$PI
Example:
$PI

$nopi Disable listing page formatting
Syntax:
$NOPI
Example:
$NOPI

$nopaging Disable listing page formatting
Syntax:
$NOPAGING

48 CHAPTER 4.

BUILD-IN MACRO-ASSEMBLER

Example:
$NOPAGING

$pagelength Set lines per page for listing
Syntax:
$PAGELENGTH (int)
Example:
$PAGELENGTH (64)

$pl Set lines per page for listing
Syntax:
$PL(int)
Example:
$PL(64)

$pagewidth Set columns per line for listing
Syntax:
$PAGEWIDTH(int)
Example:
$PAGEWIDTH(132)

$pw Set columns per line for listing
Syntax:
$PW (int)
Example:
$PW(132)

$symbols Create symbol table
Syntax:
$SYMBOLS
Example:
$SYMBOLS

$sb Create symbol table
Syntax:
$SB
Example:
$SB

$nosymbols Don’t create symbol table
Syntax:
$NOSYMBOLS
Example:
$NOSYMBOLS

$nosb Don’t create symbol table
Syntax:
$NOSB
Example:
$NOSB

$title Inserts title string into page header
Syntax:
$TITLE(string)
Example:
$TITLE(My firts code)

$tt Inserts title string into page header
Syntax:
$TT (string)
Example:
$TT(My firts code)

$noobject Do not create Intel HEX file
Syntax:
$NOOBJECT
Example:
$NOOBJECT

$object Specify file name for Intel HEX
Syntax:
$0BJECT (string)
Example:
$0BJECT (my _hex.hex)

$print Specify file name for list file
Syntax:
$PRINT (string)
Example:
$PRINT (my_list.1lst)

$noprint Do not create list file at all
Syntax:
$NOPRINT
Example:
$NOPRINT

$nomacrosfirst Define and expand macro instruc-
tions after! conditional assembly and defi-
nitions of constants
Syntax:
$NOMACROSFIRST
Example:
$NOMACROSFIRST

4.8. PREDEFINED SYMBOLS 49

4.8 Predefined Symbols

There are symbols which are defined by default by assembler. The aim is to
make it a little easier to write code in assembly language for 8051, because
user don not have to define all these symbols in his or her code. This feature
can be turned of by “$NOMOD” control sequence.

Table 4.3: Code addresses

Symbol Value | Symbol Value | Symbol Value | Symbol Value
RESET 000h EXTIO 003h TIMERO 00Bh EXTI1 013h
TIMER1 01Bh SINT 023h TIMER2 02Bh CFINT 033h

Table 4.4: Plain numbers, these symbols are always defined!

Symbol Value
??MCU_8051 IDE 8051h
??VERSION 0139h 3

Table 4.5: Predefined SFR bit addresses

Symbol Value | Symbol Value | Symbol Value | Symbol Value
ITO 088h IEO 089h IT1 08Ah IE1 08Bh
TRO 08Ch TFO 08Dh TR1 08Eh TF1 08Fh
RI 098h TI 099h RB8 09Ah TBS8 09Bh
REN 09Ch SM2 09Dh SM1 09Eh SMO 09Fh
FE 09Fh

EX0 0A8h ETO 0A9h EX1 0AAh | ET1 0ABh
ES 0ACh ET2 0ADh | EC 0AEh EA 0AFh
RXD 0BOh TXD 0B1h INTO 0B2h INT1 0B3h
TO 0B4h T1 0B5h WR 0B6h RD 0B7h
PX0 0B8h PTO 0B9h PX1 0BAh PT1 0BBh
PS 0BCh PT2 0BDh | PC 0BEh

PPCL 0BEh PT2L 0BDh | PSL 0BCh

PTI1L 0BBh PX1L 0BAh | PTOL 0B9h PXO0OL 0B8h
TF2 0CFh EXF2 0CEh RCLK 0CDh | TCLK 0CCh
EXEN2 0CBh TR2 0CAh | CT2 0C9h CPRL2 0C8h
P 0DOh oV 0D2h RSO 0D3h

RS1 0D4h FoO 0D5h AC 0D6h CY 0D7h
CR 0DEh CCF4 0DCh

CCF3 0DBh | CCF2 0DAh | CCF1 0D9%h CCFO0 0D8h

CHAPTER 4. BUILD-IN MACRO-ASSEMBLER

Table 4.6: Predefined SFR addresses

Symbol Value | Symbol Value | Symbol Value | Symbol Value
PO 080h SP 081h DPL 082h DPH 083h
PCON 087h TCON 088h TMOD 089h TLO 08Ah
TL1 08Bh THO 08Ch TH1 08Dh P1 090h
SCON 098h SBUF 099h P2 0AOh 1E 0A8h
P3 0BOh P 0B8h PSW 0DOh ACC 0EOh
B 0FOh P4 0COh WDTCON 0AT7h EECON 096h
DPOH 083h DPOL 082h DP1H 085h DP1L 084h
T2CON 0C8h T2MOD 0C9h RCAP2L 0CAh | RCAP2H 0CBh
TL2 0CCh | TH2 0CDh | AUXRI1 0A2h WDTRST 0A6h
CLKREG 08Fh ACSR 097h IPH 0B7h SADDR 0A9h
SADEN 0B9h SPCR 0D5h SPSR 0AAh | SPDR 086h
AUXR 08Eh CKCON 08Fh WDTPRG 0AT7h

CH 0F9h CCAPOH 0FAh CCAP1H 0FBh CCAP2H 0FCh
CCAP3H 0FDh CCAP4H OFEh CCAPL2H O0FCh CCAPL3H 0FDh
CCAPL4H OFEh ADCLK 0F2h ADCON 0F3h ADDL 0F4h
ADDH 0F5h ADCF OF6h P5 OE8h CL 0E9h
CCAPOL 0EAh CCAPI1L OEBh CCAPL2L 0OECh CCAPL3L 0EDh
CCAPL4L OEEh CCON 0D8h CMOD 0D9h CCAPMO 0DAh
CCAPM1 0DBh CCAPM2 0DCh | CCAPM3 0DDh | CCAPMA4 0DEh
P1M2 0E2h P3M2 0E3h P4M2 0E4h P1M1 0D4h
P3M1 0D5h P4M1 0D6h SPCON 0C3h SPSTA 0C4h
SPDAT 0C5h IPLO 0B8h IPL1 0B2h IPH1 0B3h
IPHO 0B7h BRL 09Ah BDRCON 09Bh BDRCON 1 09Ch
KBLS 09Ch KBE 09Dh KBF 09Eh SADEN 0 0B9h
SADEN 1 0BAh SADDR_0 0A9h SADDR 1 0AAh | CKSEL 085h
OSCCON 086h CKRL 097h CKCONO 08Fh

4.9. SEGMENT TYPE 51

4.9 Segment type

Segment type specifies the address space to which a symbol is assigned. For
example if you define symbol ABC using “XDATA” directive, then ABS is
assigned to XDATA segment. Purpose of this is to semantically distinguish
between different types of symbols. For example if we use a symbol as address
to program memory it has different meaning that if we used it as address to
bit addressable area.

DATA Internal data memory and SFR
IDATA Internal data memory only
XDATA External data memory only
BIT Bit addressable area only
CODE Program memory only
NUMBER Arbitrary value

Table 4.7: Segment types

Symbols might be assigned to these segment types by these directives:

DATA (segment DATA)

IDATA (segment IDATA)

e XDATA (segment XDATA)

BIT (segment BIT)

CODE (segment CODE)

EQU, SET (segment NUMBER)

Code 5 Example of symbol definitions

MY_A DATA ; DATA segment (internal data memory and SFR)
MY_B IDATA OAAH ; IDATA segment (internal data memory only)
MY_C XDATA 14Q ; XDATA segment (external data memory only)
MY_D BIT P1.2 ; BIT segment (bit addressable area only)
MY_E CODE 62348D ; CODE segment (program memory only)

MY_F EQU 242Q ; Segment NUMBER (arbitrary value)

; Segment NUMBER (arbitrary value)
MY_G SET MY_A + MY_.B + MY_C + MY_.D + MY_E + MY_F

52 CHAPTER 4. BUILD-IN MACRO-ASSEMBLER

Code 6 Example of address space reservation
; CODE segment

cseg at 40h ; Start this segment at address 40 hexadecimal (64d)
my_c CODE 00abch ; Define an address in code memory
word: DW 01234h ; Define a word in code memory, will be written to code memory
my_cs: DB ’abcdef’; Define a string in code memory, will be written to code memory

; DATA segment
dseg at 10q ; Start this segment at address 10 octal (8d)

my_d DATA ’d? Define address in internal data memory or SFR area

my_ds: DS 4 ‘e

Reserve 4 bytes here and set my_ds’’ to point there

; IDATA segment

iseg at 10d ; Start this segment at address 10 decimal
my_i IDATA ’i? ; Define address in internal data memory
my_is: DS 4 ; Reserve 4 bytes here and set ‘‘my_is’’ to point there

; BIT segment

bseg at 10b
my_bit BIT ’b?
my_bs: dbit 4

Start this segment at address 10 binary (2d)

Define address in bit addressable area
€<

Reserve 4 bits here and set ‘‘my_bs’’ to point there

; XDATA segment

xseg at 10 ; Start this segment at address 10 decimal
my_x XDATA ’x? ; Define address in external data memory
my_xs: DS 4 ; Reserve 4 bytes here and set ‘‘my_xs’’ to point there
address equ Oh ; Define symbol ¢‘address’ in the NUMBER segment
org address ; Start writing program code at address defined by symbol ¢‘address’’

; Clear 1st bit in BIT array ‘¢

clr my_bs+1

my_bs’’

; Move 10d to 2nd byte in DATA array ‘‘my_ds’’
mov my_ds+2, #10d

; Move 88d to 3rd byte in IDATA array ‘‘my_is’’
mov my_is+3, #88d

; Move 55h to Oth byte in XDATA array ‘‘my_xs’’
mov A, #55h

mov DPTR, #(my_xs + 0)

movx @DPTR, A

; Read 1st byte from CODE array ‘‘my_cs’’
mov DPTR, #my_cs

mov A, #1

movc A, GA+DPTR

sjmp $; Infinite loop (‘‘$’’ stands for address of current instruction)

end ; End of assembly, everything after this directive is ignored

4.10. CONDITIONAL ASSEMBLY 53

4.10 Conditional Assembly

The aim of conditional assembly to to assemble certain parts of the code if
and only if certain arithmetically expressed condition is met. This feature
can prove useful particularly when the user want to make the code some-
how “configurable”. This assembler provides these instructions to work with
conditional assembly:

e [F <condition>

e IFN <condition>

e [FDEF <symbol>

e [FNDEF <symbol>

e ELSE

e ELSEIF <condition>

e ELSEIFN <condition>

e ELSEIFDEF <symbol>
e ELSEIFNDEF <symbol>
e ENDIF

This can be best demonstrated on an example:

Code 7 An example of conditional assembly usage

abc equ 16 ; Assign number 14 to symbol abc
Xyz equ 10 ; Assign number 10 to symbol abc
ifdef abc ;<--+ Assemble only if symbol abc has been defined
if (abc = 13) H | <--+ Assemble if 13 has been assigned to symbol abc
mov a, #01010101b 5 | |
elseif (abc = 14) H | <--+ Assemble if 14 has been assigned to symbol abc
mov a, #0aah ; | \
elseifn (abc % 2) ; | <--+ Assemble if the value assigned to symbol abc is even
mov a, ; | \
else 5 | <-—+ Else ..
mov a, #377q ; | \
endif 5 | <--+
elseifndef xyz ;<--+ Assemble if symbol xyz has NOT been defined
clr A 5 |
else ;<--+ Else ...
ifn (xyz mod 2) ; | <--+ Assemble if (yxz modulo 2) is O
mov a, #128d ; | \
endif 5 | <--+
endif 3<--+
sjmp $; Infinite loop

end ; End of assembly

54

CHAPTER 4. BUILD-IN MACRO-ASSEMBLER

4.11

Macro Processing

Macro is a sequence of instructions which can be expanded anywhere in the
code and for any number of times. That may reduce necessity of repeating
code fragments as well as source code size and make the solved task easier

to comprehend and solve.

Unlike subprograms macros do not add extra

run-time overhead and repeating usage of macros may significantly increase
size of the resulting machine code. Macros supported by this assembler are
divided to named and unnamed ones.

MACRO
REPT
TIMES
ENDM

Define a new named macro

Define a new unnamed macro and expand it right away for the specified number of times
Exactly the same as “REPT”

End of macro definition

Table 4.8: Directives directly related to macros

This can be well demonstrated on examples:

Code 8 An exaple of REPT directive

3

mov
cpl
mov

; Repeat the code 3 times
a, p0

a

pl, a

; This is the same as if you wrote this:

mov
cpl
mov
mov
cpl
mov
mov
cpl
mov

a, p0
a
pl, a
a, p0
a
pl, a
a, poO
a
pl. a

4.11. MACRO PROCESSING

Code 9 An exaple of simple named macro

abc macro ; Define named macro ‘‘abc’’
mov a, p0
cpl a
mov pl, a

endm

abc ; Expand macro ‘‘abc’’ here

abc ; Expand macro ‘‘abc’’ here

; This is the same as if you wrote this:

mov a, p0
cpl a
mov pl, a
mov a, pO
cpl a
mov pl, a

Code 10 An exaple of named macro with two parameters

¢

; Define macro named as xyz’’ with 2 mandatory parameters

Xyz macro foo, bar
mov foo, #10h
cpl bar
endm
Xyz a, c ; Expand macro ¢‘xyz’’ here
Xyz pO, p1.0 ; Expand macro ¢‘xyz’’ here

; This is the same as if you wrote this:
; Xyz a, ¢

mov a, #10h
cpl c

5 Xyz p0, pl.0
mov pO, #10h

cpl pl.0

56 CHAPTER 4. BUILD-IN